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Summary

Active matter is a broad class of materials within which individual entities, the active particles, consume
energy in order to perform movement. These materials are at the intersection of many distinct fields of research,
such as biology, engineering, and physics, and have thus attracted considerable attention. Because of their
perpetual consumption of energy, these systems are out of thermodynamic equilibrium. As a consequence they
display a wealth of surprising phenomena which challenge our conception of equilibrium phases and dynamics.
Among them, collective motion is particularly intriguing and exciting on multiple grounds. First because it
emerges in systems with distinct length and time scales, from collections of cells to large crowds, flocks, and
swarms, yet with some common characteristics. This thus suggests some sense of universality in the mechanisms
leading to different collective behaviours. Second because parts of these motions display signatures shared with
other equilibrium phenomena. While the latter are very diverse, ranging from the glass transition to inertial
turbulence, these connections mean that a number of concepts and tools are readily available to describe
out-of-equilibrium behaviours. Third because the possible applications of the understanding and control of
these phenomena are far-reaching: treatment of specific pathologies, design of intelligent materials, crowd
management, etc. In this Thesis, we focus on dense active matter, where the movement of individual particles is
hindered by crowding effects, and aim to characterise how this competition leads to emerging collective motion.
To this effect we use a simple model of two-dimensional isotropic self-propelled particles, namely active Ornstein-
Uhlenbeck particles, where the departure from the equilibrium limit is controlled via the persistence time of
propulsion forces. Owing to its simplicity, the phenomena described within this model have the potential to
apply to a broad range of materials. We broadly map the phase behaviour of this model, from the equilibrium-
like regime at small persistence to the to far-from-equilibrium regime at large persistence. We focus our efforts on
the latter regime, where velocity correlations were recently shown to emerge. We demonstrate that a disordered
liquid phase exists up to very large persistence, if polydispersity frustrates the ordering of the system, and
that this persistent liquid displays various manifestations of disordered collective motion. First, we show that
persistent systems are dynamically arrested at large packing fraction. Close to dynamical arrest, we find
that the liquid displays dynamical heterogeneity similar to equilibrium dense systems. We investigate, in the
idealised limit of infinite persistence, the microscopic processes leading to these heterogeneities. Then, away
from dynamical arrest, we show that our model displays chaotic advection flows, as typically shown by turbulent
systems. We highlight how this specific behaviour may be universal to a broader class of active systems relying
on the competition of crowding and persistent forcing. Finally, in monodisperse systems which display long-
range order at large packing fraction, we describe the far-from-equilibrium mechanisms leading to structural
relaxation.

Résumé

La matière active est une vaste classe de matériaux au sein desquels chaque entité, les particules actives,
consomme de l’énergie pour effectuer un mouvement. Ces matériaux sont à l’intersection de plusieurs champs de
recherche distincts, tels que la biologie, l’ingénierie et la physique, et ont donc attiré une attention considérable.
En raison de leur consommation perpétuelle d’énergie, ces systèmes sont hors de l’équilibre thermodynamique.
En conséquence ils exhibent une myriade de phénomènes surprenants qui défient notre conception des phases
et dynamiques à l’équilibre. Parmi eux, le mouvement collectif est particulièrement intriguant et excitant sous
plusieurs aspects. Premièrement parce qu’il émerge dans des systèmes aux échelles de longueur et de temps
distinctes, des ensembles de cellules aux larges foules, troupeaux et essaims, avec cependant des caractéristiques
communes. Cela suggère alors une logique universelle derrière dans les mécanismes à l’origine de ces différents
comportements collectifs. Deuxièmement parce que certains de ces mouvements ont des signatures communes
avec des phénomènes d’équilibre. Bien que ces derniers soient très divers, allant de la transition vitreuse à
la turbulence inertielle, ces connections donnent accès à de nombreux outils et concepts afin de caractériser
les comportements hors-équilibre. Troisièmement parce que les applications possibles d’une compréhension fine
voire du contrôle de ces phénomènes sont d’une grande portée : traitement de pathologies spécifiques, conception
de matériaux intelligents, gestion des foules, etc. Dans cette Thèse, nous nous concentrons sur la matière active
dense, où le mouvement des particules individuelles est entravé par des effets d’encombrement, et cherchons à
caractériser comment le mouvement collectif émerge de cette compétition. Pour cela nous utilisons un modèle
simple en deux dimensions de particules auto-propulsées isotropes, à savoir des particules d’Ornstein-Uhlenbeck,
où l’écart à la limite d’équilibre est contrôlée par le temps de persistance des forces de propulsion. En raison de
sa simplicité, les phénomènes décrits pour ce modèle ont le potentiel de s’appliquer à une variété de matériaux.
Nous cartographions les phases de ce modèle, du régime proche de l’équilibre à petite persistance au régime loin
de l’équilibre à grande persistance. Nous concentrons nos efforts sur ce second régime, là où a été récemment



montré l’émergence de corrélations de vitesse. Nous démontrons qu’une phase liquide désordonnée existe à très
grande persistance, à condition que la polydispersité frustre l’ordre structurel, et que ce liquide exhibe différentes
manifestations de mouvement collectif désordonné. D’abord, nous montrons que les systèmes persistants sont
dynamiquement arrêtés à grande densité. Dans le voisinage de l’arrêt dynamique, nous trouvons que le liquide
affiche des hétérogénéités dynamiques similaires aux systèmes denses à l’équilibre. Nous examinons, dans une
limite idéale de persistance infinie, les processus microscopiques menant à ces hétérogénéités. Ensuite, à distance
de l’arrêt dynamique, nous montrons que notre modèle exhibe des écoulements d’advection chaotiques, à l’instar
des systèmes turbulents. Nous mettons en exergue comment ce comportement spécifique pourrait être universel
au sein d’une classe plus large de systèmes actifs s’appuyant sur une compétition entre l’encombrement et le
forçage persistant. Enfin, dans des systèmes monodisperses qui exhibent à grande densité un ordre à longue
portée, nous décrivons les mécanismes permettant la relaxation structurelle loin de l’équilibre.
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1 | Introduction

1.1 Broad context

Statistical physics aims at bridging the gap between microscopic properties and macroscopic behaviours.
While simple individual entities (commonly called particles) could be described by e.g. Newtonian mechanics,
the description of a large collection of them (of the order of NA ≈ 1023) necessitates the use of statistical
descriptors. The kinetic theory of gases is one of its earliest examples, linking macroscopic properties such as
temperature and pressure to a microscopic property, namely the average kinetic energy of particles. In the
presence of interactions between the constitutive entities of the system, the behaviour of the ensemble may be
different than the behaviour of separated individuals: this is called an emerging phenomenon. We encounter
many of these in our everyday life: water molecules in a dilute gas seldom interact and move freely, however
upon compression they may transition to a liquid state which flows viscously, while upon cooling they may
transition to a solid state which resists elastically to external constraints.

A central concept in statistical physics is thermodynamic equilibrium, which is the property of a system
where there are no macroscopic flows of matter or energy. The system is invariant under time reversal, a
consequence of which is detailed balance: each microscopic process within the system is equilibrated by its
reverse process which happens with equal probability. Within this hypothesis, a wealth of very broad and
powerful relations are available to describe the system, such as the equilibrium Boltzmann distribution which
relates the probability of a given state to its energy and to temperature, and also fluctuation-dissipation theorems
which relate fluctuations at equilibrium to the response of the system to external perturbations.

There are several ways a system can break detailed balance and time reversal symmetry, and thus be out
of equilibrium [1]. First, one may impose external gradients, which consequence is to create macroscopic flows
opposing this gradient. For example, in a kettle filled with water and heated at one extremity, convective
flows will propagate the heat through the liquid. Second, the system may be relaxing towards equilibrium, for
example the water in the kettle after one removed the heat source. This relaxation can be slow or even infinitely
slow in the case of glasses [2]. Third, some of the particles may be able to use stored or ambient energy to
e.g. perform movement or induce energy flows, this is the case in active matter [3, 4]. (The latter name is in
opposition to passive, i.e. equilibrium, systems.) These examples are not exclusionary: in this Thesis we will
encounter the overlap between slowly relaxing and active systems.

1.2 Active matter

Active matter is an umbrella term which applies to a broad range of living and synthetic systems at all
scales: from cell tissues [5–7] and suspensions of microtubules [8, 9] or colloids [10–13], to human crowds [14, 15]
and robot swarms [16], and to bird flocks [17, 18] and fish schools [19]. In all these examples, individual entities
(called active particles) are able to perform movement on their own by consuming energy. Because of this
consumption of energy, the movement of an active particle is not time-reversal symmetric, and the system is out
of equilibrium. These movements are extremely diverse, and imply various interactions between the particles
and their environment, e.g. individual cells may crawl on an underlying substrate or use flagella to propel
themselves in a fluid. Moreover, the interactions between the particles are also diverse, e.g. chemical signalling,
visual signalling, or hydrodynamic interactions. Due to these interactions, an ensemble of these particles may
display an emerging collective behaviour which is different from the behaviour of the individual. A central
endeavour in active matter research is to identify mechanisms underlying these collective behaviours and which
are universal over different classes of system. Among these behaviours, we will devote special attention to
collective motion, in which active particles perform spatially correlated movement in the absence of external
gradients.

Understanding the behaviour of active systems is of great interest in engineering and biology, e.g. to
design metamaterials, to understand the spread of cancer cells and wound healing [6], or for crowd safety and
management [14, 15]. These also have applications in theoretical physics. Indeed, these provide useful toy
models to extend concepts and tools from equilibrium statistical physics to the out-of-equilibrium realm, e.g.
pressure [20, 21] or fluctuation-dissipation relations [22, 23].

A physical approach to the field of active matter mainly involves two powerful tools. First, the simplification
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of the problem, with the development of models which can be thoroughly studied. Here the simplification refers
to the reduced number of choices in the parametrisation of the problem, not in the behaviour of the model itself.
Indeed, despite their simplicity these models may present complex emerging behaviour as we will show below.
The point of starting from simple models is that it enables us to pinpoint the relevant physical mechanisms
at the origin of these complex behaviours. Second, the use of advanced numerical methods to explore the
correspondence between microscopic and macroscopic behaviour.

A common and versatile class of models for active matter is self-propelled particles. In these, activity
is introduced as non-gradient forces acting on each particle. We call these propulsion forces. They may be
deterministic [24, 25] but are most often stochastic. We must differentiate systems where there are no couplings
between these forces, and systems where these couplings exist and thus where we have to consider their order
(usually nematic or polar). We will refer to these active systems as being isotropic and anisotropic respectively.

Intense analytical and numerical efforts have been devoted to the study of self-propelled particles in two
spatial dimensions. The reason for this is that numerous biological systems of interest have effectively two-
dimensional dynamics, e.g. monolayers of swimming bacteria [26], confluent cell monolayers [27], and suspen-
sions of microtubules confined to an oil-water interface [28]. We will in this Thesis focus on two-dimensional
active matter. This choice of dimensions has important consequences for the fluctuations in dense phases which
we will detail in Secs. 1.3, 1.4.

1.2.1 Anisotropic active matter

One of the earliest examples of anisotropic self-propelled particles model is the Vicsek model [29]. It starts
from the observation that, in many biological systems, individuals tend to move similarly to other individuals
in their neighbourhood. Vicsek et al. thus proposed a model in which a given particle in a two-dimensional
space moves at a constant speed, and the direction of this velocity is updated at regular intervals to assume
the average movement direction of its neighbours in a radius r, with an additional random perturbation. This
model only has 2 control parameters: the amount of noise and the density (which sets the typical number of
neighbours in a radius r). An individual particle performs a persistent random walk, however an ensemble of
these show a transition, at low noise and large density, to an ordered polar phase in which all particles move in
the same direction, resembling flocks of birds or bacteria. This model thus exemplifies how local microscopic
interactions may lead to coherent motion on much larger scales. It is noteworthy that this transition to a
polar phase involves a spontaneous breaking of continuous symmetry in two dimensions, which at equilibrium
is forbidden by the Mermin-Wagner theorem. Since self-propulsion takes the system out of equilibrium, this
transition is possible in the Vicsek model.

When describing dense active matter, e.g. dense cell tissues, steric interactions may matter. To account
for these effects, numerous models involving repulsions between particles or density-dependent velocities have
been introduced. These models were very powerful at reproducing complex behaviours observed in experiments,
such as pattern formation [30] or bacterial swarming [31], enabling us to study these phenomena with greater
precision.

1.2.2 Isotropic active matter

In isotropic models of self-propelled particles, propulsion forces follow independent stochastic processes which
are usually defined by their standard deviation (their strength) and the time scale over which they decorrelate
with themselves (their persistence time). In the limit of zero persistence time the active propulsion force acts as
an uncorrelated white noise, thus this is commonly considered as the equilibrium thermal limit, and increasing
persistence time as taking the system further from equilibrium [22]. A typical example of isotropic self-propelled
particles is run-and-tumble particles (RTPs) [32, 33], which is inspired by the motion of Escherichia coli. In this
model, particles are propelled with forces of fixed strength and which randomly change their directions with a
given fixed tumble rate (i.e. inverse persistence time). An individual particle thus also performs a persistent
random walk. However an ensemble of these, interacting via repulsive interaction, show a transition at large
persistence time and moderate density to a phase-separated state known as motility-induced phase separation
(MIPS) [1]. This transition bears similarities with the liquid-gas phase separation, with the steady state of
the system showing a dense macroscopic cluster immersed in a dilute gas. Borrowing terms from equilibrium
systems, we may then ask if this dense cluster is a flowing liquid or an arrested solid (see Secs. 1.3, 1.4).

Isotropic models also display some forms of collective motion in “extreme conditions”. Ref. [34] proposes to
define these conditions as a combination of large propulsion strength and persistence time with respect to the
typical strength of interparticle interactions and typical time of relaxation time in the absence of activity. In
this setting, systems of isotropic self-propelled particles were shown to support mesoscopic velocity correlations
as a consequence of the coupling between density fluctuations and persistent active forcing [34–37]. There is
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evidence that these correlations of instantaneous motion translate into large length scale correlated motion on
larger time scales, either in the form of avalanche-like dynamics in which small local changes are at the origin
of large-scale motion [34, 38] (see Sec. 1.4), or in the form of chaotic flows [34, 39] (see Sec. 1.5).

1.3 Crystallisation

At large density and low temperature, equilibrium systems may be most thermodynamically stable in the
form of a crystal. Crystals are elastic solids, within which the arrangement of particles follows a lattice which is
periodic in all directions of space. The process by which a disordered liquid transforms into an ordered crystal,
crystallisation (and its inverse crystal melting), is highly dependent on the number of spatial dimensions. In
three dimensions, this transition is a discontinuous first-order transition. Crystal nuclei are first formed in
the bulk liquid and grow until the whole system is ordered. In this three-dimensional crystal, particles have
finite (thermal) fluctuations around their lattice site, thus order may be conserved. This is not the case in
two dimensions: in the absence of long-range interactions, there are long-wavelength fluctuations around the
lattice sites which amplitude grows as the logarithm of the system size. These are known as Mermin-Wagner
fluctuations. Therefore, for large enough systems, these fluctuations are much larger than the typical length
between particles and the order is destroyed. These fluctuations do not however forbid the existence of a
transition to an ordered solid, but the mechanism by which a two-dimensional liquid forms an ordered crystal
is different from its three-dimensional counterpart [40].

Topological defects play a crucial role in the melting of two-dimensional crystals [41, 42]. Consider an
ensemble of identical disks. In two dimensions the densest packing has particles arranged in a regular hexagonal
lattice, within which each of these disks has exactly six nearest neighbours. This corresponds to the perfect
crystal, which is invariant by translation along the lattice primitive vectors. There are two kinds of order in this
packing: translational order, indicating that neighbouring particles fluctuate around equally spaced positions
along the lattice primitive vectors, and orientational order, indicating that nearest neighbours particles are
found in the directions of the lattice primitive vector. A disclination is a topological defect that corresponds
to a particle which has a number of neighbours different than six, typically five or seven. Thus locally these
defects break orientational order. Two bounded disclinations, i.e. a couple of particle with respectively 5 and
7 neighbours and which are neighbours of each other, corresponds to a dislocation. The latter is an other
topological defect around which orientational order is conserved but not translational order. Finally, it is
noteworthy that dislocations may also be bonded, in which case translational order is conserved away from
the defects. Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory predicts that the melting of a two-
dimensional crystal with increasing temperature or decreasing density is a two-step process [43]. First, global
translational order is destroyed, which at the topological level happens through the unbinding of dislocations.
As a consequence the shear elastic modulus vanishes and the system is fluid. This fluid is however not isotropic
as the orientational order is still conserved globally, it is called an hexatic phase. Second, global orientational
order is destroyed, which at the topological level happens through the unbinding of disclinations. The resulting
system is an isotropic liquid phase. The solid-hexatic transition, at equilibrium, is a continuous transition [44],
while the hexatic-liquid transition may be either first-order or continuous [45].

On the one hand, this two-step melting scenario has been confirmed in some dense active systems of identi-
cally shaped particles, either isotropic [46, 47] or anisotropic [48]. It was also reported, for a model of isotropic
self-propelled particles, that the dense phase of MIPS is structurally similar to an equilibrium crystal near
the crystal-hexatic transition [49]. Interestingly, despite displaying the structural characteristics of a two-
dimensional solid, these dense large-persistence phases display at the same time the dynamical characteristics
of a fluid [49, 50] – a behaviour which cannot be observed at equilibrium. There is thus a non-trivial relation
between structure and dynamics in dense active systems.

On the other hand, an experiment with dense athermal vibrated disks highlighted that, right below ordered
close packing, the system featured finite-sized crystalline clusters [51]. From a static point of view, this situation
is not dissimilar to an equilibrium phase separation, which would indicate a first-order transition between a
disordered liquid and an order solid. However a careful dynamical inspection shows that these clusters “self-
melt” by continuously forming active liquid bubbles [51], which behaviour is incompatible with the KTHNY
scenario.

1.4 Glass transition

Glasses are ubiquitous in our everyday life (and vocabulary). It is no doubt that the person reading the
present Thesis will have around them a glass cup, or a window glass, or may even be reading this text through
glasses. Humans have been using naturally occurring glasses and making their own for millennia, yet the physical
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process by which a liquid becomes a glass is still an intense field of research. One way to obtain a glass is to
supercool a liquid beyond its freezing point. At low temperature, the ordered crystal may be thermodynamically
favoured with respect to the disordered liquid, and the latter should transition to the former. However there is
a kinetic component to this transition: in three dimensions crystal nuclei must be formed then grow until the
whole system is crystalline. This transition may be avoided at large cooling rates, especially if the composition
of the system frustrates structural order, which is achieved e.g. in simple systems by employing a variety of
sizes for the particles. In these conditions the viscosity of the fluid increases significantly, reaching a point where
no dynamics can be observed on experimental time scales, and the system is effectively dynamically arrested.
The process through which the disordered liquid transforms into an arrested solid is called the glass transition
[2, 52]. It is noteworthy that this transition happens without any noticeable change in the structure between
the liquid and the glass which show, contrarily to the crystal, similar disordered structure – a problem which
has puzzled physicists for decades [53, 54].

The glass transition must be distinguished from the jamming transition through which a disordered (or
amorphous) granular material acquires an elastic bulk modulus at large packing fraction. While both glasses
and jammed packings behave elastically on small time scales and are disordered, the latter rely on specific
geometrical constraints [55].

From a theoretical point of view, liquid state theory aims to characterise the emerging macroscopic properties
of a liquid from a simple microscopic model for its particles, most often spherical particles which interact via
conservative isotropic forces and which are subject to thermal excitation [56]. This approach thus takes its roots
in statistical physics. In these models there is an inherent competition between crowding, i.e. how strongly does
the interaction potential keep particles from overlapping, and forcing, i.e. how strongly does the driving (which
can be external such as shear, or internal such as thermal motion) make particles overlap. This competition
is well encapsulated in the concept of potential energy landscape [57]. The latter is the surface defined by the
function which attributes the interaction potential energy to a set of coordinates in the system. Therefore to
each configuration corresponds an unique point on this surface. This representation is convenient because the
properties of the system are well described, in the supercooled regime close to the glass transition, by the sole
sets of local minima of this surface (i.e. force-balanced configurations) and transition paths (or barriers) between
them [57]. Structural relaxation is the process by which the system, starting from a given initial configuration,
explores the potential energy landscape and eventually loses memory of its original configuration. This process
happens through a succession of barrier crossings, where local structures rearrange, and over a time scale known
as the relaxation time. When forcing overcomes crowding the system crosses the barriers easily and particles
freely diffuse. On the contrary, if crowding overcomes forcing, which is the case close to the glass transition,
the system rarely experiences transitions through barriers.

In the case of systems subject to thermal excitation, these rearrangements happen through rare activated
events. Their rate thus decreases with decreasing temperature, which in turn increases the relaxation time. At
low enough temperature, the system is effectively trapped in a metastable configuration and is unable to explore
the potential landscape, especially more probable (i.e. less energetic) configurations: it thus breaks detailed
balance and falls out of equilibrium. In this regime, a small decrease of the temperature (of the order of a few
percent) amounts to a large increase of the relaxation time (of several orders of magnitude). The relaxation
time eventually exceeds all accessible experimental time scales, leaving the system dynamically arrested.

In the case of sheared amorphous systems, the mechanism for transition through barriers is different. Specif-
ically, athermal systems may be sheared quasistatically [58]: an infinitesimal shear transformation is applied to
the system and the system is left to relax to a force-balanced configuration. In this case, rather than thermal
hopping through barriers, the metastable state of the system is destabilised by the shear transformation, and
a small localised rearrangement follows. Because of elasticity, the effects of this local change are felt far from
the rearrangement, which in turn causes other cascading rearrangements. This phenomenon is known as an
avalanche.

Beside dynamical slowdown, an important hallmark of supercooled liquids is dynamical heterogeneity [54, 59].
In the supercooled regime, the rate of rearrangement of local structures is not homogeneous in space as it would
be in normal liquids. A mapping of the regions where rearrangements occurred during a time lapse of the
order of the relaxation time shows that these regions are clustered together: there are on the one hand large fast
regions of the system where multiple rearrangements took place and on the other hand equally large slow regions
which kept their initial structure. These non-trivial spatiotemporal fluctuations become more pronounced as the
glass transition is approached. This is a form of disordered collective motion which is common to other crowded
disordered systems, e.g. jammed granular materials under shear [60, 61] and spin glasses [62]. This resemblance
raises questions about the possible common mechanisms with which these systems explore their potential energy
landscape [63]. Describing and rationalising the emergence of dynamical heterogeneities has thus been a central
problem in glass physics research [52] as their seemingly universal nature provides an essential test for various
theories of the glass transition, e.g. mode-coupling theory [64], random first-order transition theory [65], and
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dynamical facilitation approach [66].
There has been an interest over the last two decades on the glassy behaviour of active systems [67]. In

particular, dense bacterial suspensions [68] and confluent cell tissues [27, 69] have attracted specific attention,
due to the combination of both large densities and wide variety in individual particles’ (in this case, cells)
sizes which promotes glass formation in equilibrium systems. The dynamics of confluent monolayers of MDCK
cells, for example, was shown to slow down with increasing density, and also displays dynamical heterogeneity,
similarly to equilibrium systems [69]. This behaviour is intriguing on numerous aspects. First, it raises the
question of whether biological organisms may use glass-like properties to perform actions, or if these properties
emerge in specific conditions [70, 71]. In the latter case, this would mean that tools and concepts developed in the
context of condensed matter physics may be applied to biological systems in order to characterise them. Second,
from a physical point of view, this highlights even further that dense and disordered systems have common
properties and behaviour, irrespectively of their forcing mechanism. Thus, progresses on the understanding of
the relaxation of active glasses may inform the way passive glasses relax.

These questions have motivated the development of diverse theoretical tools [72, 73], numerical models
[34, 74], and, only very recently, synthetic experimental systems [12, 13], with which active glassy dynamics
may be studied. Among these, simple models of spherical particles subject to self-propulsion forces have
been extensively studied [75–82]. The great interest in these models may be attributed in part to their close
resemblance to equilibrium numerical models of glasses, which thus enables to use similar observables in order
to characterise their dynamics and fluctuations. A first major breakthrough was to show that these systems, in
which thermal fluctuations are replaced or supplemented by active driving, still exhibited dynamical slowdown:
at small temperature and small propulsion strength [80, 83], and, in the absence of thermal fluctuations, at
large packing fractions and small propulsion strength [77, 78]. More surprisingly, even though one could naively
expect that driving would delay if not destroy the glass transition [84], the use of persistent active driving
was shown in some cases to promote it [81]. Finally, dense active systems were shown to also display strong
dynamical heterogeneities, and that these become increasingly important as the glass transition is approached
[79, 81, 82].

From these observations, different theories for the equilibrium glass transition were adapted to take into
account active driving, among them mode-coupling theory [73, 78, 85, 86] and random first-order transition
theory [83, 87]. These theories have been quite successful at small persistence time, close to the equilibrium
limit [78, 83], but significant deviations were reported far from equilibrium [83]. It was pointed out early that
non-equilibrium instantaneous velocity correlations may have a role to play in the slow relaxation of dense active
matter [78, 81], yet its role has remained elusive. In addition, the striking resemblance between the velocity
fields in dense yet frozen active matter [88] and the dynamical heterogeneities described in dense cell tissues
[69] questions further the relation between these non-equilibrium correlations and the relaxation mechanisms
of dense active systems. An understanding of the relaxation of active glasses therefore necessitates a fine
characterisation of the emergence of collective motion in active systems.

1.5 Turbulence

Liquids present a variety of composition at the microscopic level. It is the case for pure solutions, from the
simple three-atom molecules of water to the long carbon chains of lipids, and even more striking for complex
solutions like coffee or wine. Despite this microscopic variety, these solutions display similar macroscopic
behaviours. This suggests a description of the fluid at an intermediate mesoscopic level, at which the microscopic
details do not matter.

At this level, the time evolution of the velocity in a viscous fluid is well described by the deterministic
Navier-Stokes equation. This equation, despite being almost two-centuries old and of paramount importance in
theoretical and practical applications, has no known exact solution and its numerical solving is also difficult in
some specific cases. This difficulty comes from its non-linearity, embedded in its convective inertia term. The
Reynolds number quantifies the importance of inertial forces with respect to viscous forces. At low Reynolds
number, the flow is well described by the (linear) Stokes equation: it is laminar, i.e. flow particles follow smooth
paths. On the contrary, at high Reynolds number, when inertial effects dominate, the flow is turbulent [89].
In this case, the flow is characterised by chaotic changes in the velocity, and unsteady vortices (or eddies) on
many different length scales. These eddies play a fundamental role, they are formed at large length scales then,
because they are unstable, separate in eddies on smaller length scales which inherit the kinetic energy of the
larger eddies. This process continues again until these eddies reach a sufficiently small scale at which viscosity
is able to dissipate this energy. This transfer of energy from the large to the small scales is known as a kinetic
energy cascade.

A great leap forward in the understanding of turbulence was Kolmogorov’s theory of 1941, nicknamed K41
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[90]. This theory postulates that, at very large Reynolds number, the statistics of the flow is isotropic and
universal across scales, in between the large length scale where the eddies are formed and the small length scale
at which energy is dissipated, and only depends on the fluid viscosity and its energy dissipation range. This
range of scales, called the inertial range, may be several orders of magnitude large. It is a powerful theory, first
because it leads to some accurate predictions, for example for the distribution of kinetic energy across length
scales, and then because it underlies that many different fluid systems obey the same universal behaviours.

Active systems also display irregular and multiscale flows, e.g. bacterial swarms [91, 92], dense epithelial
tissues [7], and suspensions of microtubules and kinesin motors [28, 93], which all show intermittent swirling mo-
tion. The term active turbulence [94] is then becoming increasingly popular to describe these chaotic mesoscale
flows within these various anisotropic active systems. Unlike classical turbulence, active turbulence is observable
in the absence of inertia, i.e. at exactly zero Reynolds number. Moreover, the energy injection is not externally
imposed but self-generated at small scales [94].

Is active turbulence as universal as inertial turbulence? Or, at least, can its different models be organised
in subclasses with universal properties? In equilibrium statistical mechanics, close to critical points, universal
properties are known to emerge among systems which share the same symmetries [95]. Thus, a first step to
answer these questions may reside in a classification of active turbulence models with respect to their symmetries,
which is the path followed in a recent review on the subject [94]. First, the symmetry of the anisotropic
active driving, which may be either nematic or polar. Then, the system will be considered wet if it conserves
momentum, for example if hydrodynamic interactions dominate, and dry if it does not. There are thus 4
classes: wet nematic, dry nematic, wet polar, and dry polar. On the one hand, in nematic systems [96–98]
flow derives in both wet and dry conditions from an instability in the dynamics of the nematic director field,
with an emerging length scale determined by the balance between active and nematic stresses [96, 98]. On the
other hand, most studies of polar active turbulence have either considered wet systems of swimmers [99], or
the Toner-Tu-Swift-Hohenberg equation [100, 101], which describes incompressible flows in dry systems. It is
noteworthy that in the latter equation there is no distinction between the active force and the velocity, which
is exact e.g. in the absence of steric interactions. Among these classes, only wet nematic active turbulence
was shown to display universal scaling behaviour of the distribution of kinetic energy across length scales [98],
similarly to Kolmogorov’s law.

May isotropic active systems also support active-turbulent flows? It was suggested [34] that dry isotropic self-
propelled particles, in the limit of large density and persistence at which mesoscale velocity correlations emerge,
displayed swirling motion with strong similarities with active turbulence in anisotropic systems [100, 102]. There
already are hydrodynamic theories describing velocity correlations in these models [103, 104], and these already
show that details of the self-propulsion mechanism and of the interparticle interactions are irrelevant, suggesting
some sense of universality. However it is yet unknown how or if these theories would capture active-turbulent
behaviour. Finally, these theories rely on both elasticity and an independence between positions and propulsions,
which is not captured by the classification of Ref. [98].

1.6 Overview

Dense active matter challenges our understanding of condensed matter, from their phase behaviour, to their
microscopic relaxation and emerging macroscopic flow. In particular, far from equilibrium, there is mounting
evidence that activity is at the origin of complex collective behaviours, in a range of packing fractions going
from the fluid to the glass or the crystal [34–37]. The mechanisms for these behaviours are not all uncovered,
which makes the work of establishing possible universality classes extremely difficult.

In this Thesis, using a single generic model of self-propelled particles, we provide a framework in which
various manifestations of coherent movement can be observed and studied. We will seek to answer the following
question: how does collective motion emerges from the competition between crowding and persistent forcing in
isotropic active systems?

In Chap. 2 we introduce our model: its definition, its control parameters, its characteristic scales, and
will review the literature on similar (equilibrium and nonequilibrium) models. This review will enable us to
introduce the main quantities at our disposal to describe the structure and the dynamics of our model.

In Chap. 3 we build the phase diagram of our model, in the space spanned by its control parameters. This
diagram shows that a disordered liquid exists up to very large persistence, i.e. far from equilibrium, we will
concentrate our efforts in this specific regime.

In Chap. 4 we study the microscopic relaxation in this persistent liquid on its path to dynamical arrest.
We show that this relaxation dynamics is fundamentally different from the structural relaxation in equilibrium
liquids, yet our system also displays disordered collective motion in the form of dynamical heterogeneity.

In Chap. 5 we introduce a quasistatic method which approximates the dynamics in the limit of infinite
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persistence. This technique enables us to uncover how dynamical heterogeneity is built in this idealised limit.
In Chap. 6, we show that a fine tuning of the control parameters enables us to reproduce active turbulence,

despite the absence of couplings between propulsion forces. A careful analysis of our system in this regime
shows that it does not fit the existing classification of active-turbulent systems. We provide evidence that it
belongs to a new and unexplored class.

Finally, in Chap. 7, we set the system in order to observe structurally ordered phases. We introduce in this
case the relevant structural and dynamical length scales, and their possible relations.

We gather our conclusions in Chap. 8.
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2 | Active Ornstein-Uhlenbeck particles

We introduce in this Chapter the model of self-propelled particles we will consider in this Thesis, namely
active Ornstein-Uhlenbeck particles (AOUPs). We will then review the literature on the structural and dynam-
ical properties of this model at large density and/or large persistence. We will finally conclude with a brief
discussion of the length and time scales involved in the flow of these particles and the associated emerging
phenomena.
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2.1 Model definition and properties

We want to keep the model as simple as possible so as to highlight the precise origin of physical behaviours.
Self-propelled particles have few control parameters yet display complex emerging phenomena.

2.1.1 Definition of active Ornstein-Uhlenbeck particles

We start from the equation of motion in time t of a single particle i, in two dimensions (2D), subjected to
a drag force and a propulsion force

mr̈i = −ξṙi + pi (2.1)

where m is its mass and ξ a viscous damping coefficient. By convention we note ṙ ≡ dr/dt and r̈ ≡ d2r/dt2 the
first and second derivative of r with respect to time t. We introduce ẑ an unit vector orthogonal to the plane
of the motion. In the following, we will only consider overdamped dynamics and neglect the inertial term on
the left hand side. Therefore the drag force will exactly compensate all the other forces

ξṙi = pi. (2.2)

This hypothesis is very generic in the description of soft matter systems and in particular dense cell tissues
[5, 35].

The specific choice of the propulsion forces evolution pi is the defining feature of the model of self-propelled
particles [105]. We choose to have pi follow an Ornstein-Uhlenbeck process [106]

τpṗi = −pi +
√
2ξ2D0ηi (2.3)
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where ηi is a zero-mean Gaussian white noise with variance
〈
ηi(0)ηj(t)

〉
= 1δijδ(t), (2.4)

where the angular brackets ⟨· · · ⟩ denote a time average taken over different initial times 0 in the steady-state
dynamics, 1 is the identity matrix, δij is the Kronecker delta, and δ(s) is the Dirac delta function. We call the
particles subjected to this force active Ornstein-Uhlenbeck particles (AOUPs) [107–109].

Different choices can be made for the propulsion forces pi evolution. Another common model is active
Brownian particles (ABPs) [110], for which

pi = ξv0

(
cos θi
sin θi

)
(2.5a)

θ̇i =
√

2/τp ηi (2.5b)

where ηi is a zero-mean Gaussian white noise with variance ⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′), and therefore pi also have
fluctuations described by (2.7). While there are some differences at the single-particle level [111], we do not
expect significant differences for the regimes of large persistence and density which we are investigating [33, 86].

2.1.2 Properties and scales for free AOUPs
It follows from equation (2.3)

pi(t) = pi(0)e
−t/τp +

∫ t

0

ds
√
2ξ2D0/τ2p ηi(s)e

−(t−s)/τp (2.6)

and in the steady state [106]
〈
pi(t) · pj(t′)

〉
∼

t,t′→∞
δij(2D0/τp)e

−|t−t′|/τp (2.7)

Prob(pi) =
1

2π(D0/τp)
exp

(
− 1

2(D0/τp)
|pi|2

)
(2.8)

and thus the equation of motion for the free particle (2.2) lays the following mean squared displacement (MSD)
〈
|ri(t)− ri(0)|2

〉
=
free

4D0τp(t/τp + (e−t/τp − 1)) (2.9)

which is ballistic at small times
〈
|ri(t)− ri(0)|2

〉
∼
t→0
free

2v20t
2, v0 =

√
D0/τp (2.10)

where v0 defines the free-particle self-propulsion velocity, and diffusive at large times

lim
t→∞

〈
|ri(t)− ri(0)|2

〉

t
=
free

4D0 (2.11)

where D0 defines the free-particle self-diffusion constant. As an integrated Ornstein-Uhlenbeck process [112],
we can show that the displacements of a free particle are also normally distributed.

This definition of the propulsion forces pi enforces a Gaussian force (2.8), which has a characteristic amplitude
ξv0 and an autocorrelation time τp (2.7, 2.10). We also define the persistence length

ℓp = v0τp =
√
D0τp (2.12)

which is the typical distance travelled by a free particle before losing memory of its original velocity. The
dimensionless persistence length

P̂e = ℓp/σ (2.13)

is sometimes referred to as the Péclet number [49, 113].
For τp = 0, Eq. (2.3) gives pi =

√
2ξ2D0ηi, and thus Eq. (2.2) describes the Brownian motion of a free

particle at equilibrium with a thermal bath at temperature kBT = ξD0. For any τp > 0, pi is a coloured noise
which is not compensated by a corresponding coloured generalised drag force. This is a violation of the second
fluctuation-dissipation theorem [114], and the system is out-of-equilibrium [22].
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2.1.3 Definition and scales of the interacting system

We consider systems of N AOUPs, in a periodic square box of linear size L, with diameters σi. Particles
interact through a pairwise additive potential U , which is a function of the positions ri and diameters σi of the
particles, and we will denote −∇iU the force exerted on particle i by all other particles. By convention we note
∇i ≡ ∂/∂ri ≡ ∂ri

the partial derivative with respect to position ri. We introduce ε the characteristic energy
scale of the potential U . We set the units of length, time, and energy respectively to

σ =
1

N

N∑

i=1

σi = 1, τ0 = ξσ2/ε = 1, ε = 1 (2.14)

where the mean diameter σ sets the typical length between two particles in a dense system, the interaction time
scale τ0 is the relaxation time for a system of two particles interacting via a harmonic potential of strength ε
and thus sets the typical time scale of evolution of two-particle interaction forces, and the potential parameter
ε sets the typical interaction energy between two particles. With these we write the dimensionless equations of
our model

ṙi = −∇iU + pi (2.15)
τpṗi = −pi +

√
2D0ηi (2.16)

which, besides the choice of the potential U and the distribution of the σi, has 4 control parameters: the number
of particles N , the number density ρ = N/L2, the free-particle self-diffusion constant D0, and the persistence
time τp.

We will restrict our study to purely repulsive soft interaction potentials U which diverge at distance r = 0.
We expect our results to be robust to the specific choice of potential U , as long as it matches these criteria. We
will mainly use the Weeks-Chandler-Andersen (WCA) potential

U =
∑

i>j

Uij (2.17a)

Uij = 4ε

[(
σij
rij

)12

−
(
σij
rij

)6

+
1

4

]
Θ(21/6σij − rij) (2.17b)

where rij = |rj − ri|, σij = (σi + σj)/2, and Θ is the Heaviside step function.
We will consider systems for which diameters σi are drawn from a uniform distribution of mean σi = σ = 1,

and the polydispersity index

I =

√
(σi − σi)2/σi (2.18)

is either I = 0 (monodisperse) or I = 20% (polydisperse). We chose this specific value of I for polydisperse
systems such that we do not observe crystallisation in the range of other parameters we have studied. We would
expect weak dependence of the dynamics on I or the shape of the distribution as long as the system does not
crystallise.

We introduce the packing fraction

ϕ = 21/3
πNσ2

i

4L2
= 21/3

πσ2
i

4
ρ (2.19)

which is proportional to the number density ρ.
It is noteworthy that the centre of mass of the system moves at the velocity

V =
1

N

∑

i

ṙi =
1

N

∑

i

pi (2.20)

where the second equality derives from Newton’s third law. Throughout this Thesis, we will only consider
movements with respect to the centre of mass. In this frame, we denote

vi = ṙi − V (2.21)

each particle’s velocity.
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2.2 Numerical integration

We first need to provide an initial configuration. If we do not already have one, we create one by plac-
ing particles on a regular triangular lattice and then assigning them a random diameter in the distribution
corresponding to the polydispersity index I. We then use the FIRE algorithm [115, 116] to minimise particle
overlaps.

When particles are crowded or when they move fast towards each other, a simple first-order integration
scheme (such as Euler method) is not adopted since the WCA potential is very steep. We use Heun’s method
[117–119] to improve stability. We denote δt the integration time step. From a given set of initial posi-
tions {r01, . . . , r0N} and initial propulsions {p0

1, . . . ,p
0
N}, the algorithm first computes a Euler integration of

Eqs. (2.15, 2.16)

r∗i = r0i + δt
[
−∇iU({r01, . . . , r0N}) + p0

i

]
, (2.22)

p∗
i = p0

i − (δt/τp)p
0
i +

√
2 δtD0/τ2p η̃i, (2.23)

where η̃i = (η̃i,x, η̃i,y) are two random numbers drawn for a normal distribution with zero mean and unit
variance. The algorithm then uses these first estimations to re-compute the forces and correct the step

ri = r∗i +
δt

2

[
−∇iU({r∗1, . . . , r∗N}) +∇iU({r01, . . . , r0N})

]
+
δt

2

[
p∗
i − p0

i

]
, (2.24)

pi = p∗
i −

δt/τp
2

[
p∗
i /τp − p0

i /τp
]
. (2.25)

Hence, the most computationally heavy step which is computing the forces has to be done twice per iteration.
In order to speed this up, we implement a cell list [120]. Our simulation scripts are written in C++ and are
available under the MIT license [121].

We want to characterise the steady state of the system. This is done by checking that time averages ⟨. . .⟩
do not depend on the initial time taken in the average.

We chose the integration time step δt small enough such that the integration procedure remains stable and
the steady-state averages do not depend on its value.

2.3 Phase description of interacting AOUPs

We will review in this Section the main results on the phase behaviour of monodisperse and polydisperse
systems of self-propelled particles. It is noteworthy that in dense and disordered passive systems, dramatic
dynamical changes can happen without similarly dramatic changes in the structure [122]. Moreover, because
self-propelled particles are out of equilibrium, there is a priori no reason why the structure would dictate the
dynamics of the system [49, 51]. Our review will thus address the two following fundamental questions about
the system separately.

1. Is it structurally ordered?

2. Does it flow easily?

We will provide the essential quantities and concepts to tackle these questions.

2.3.1 Is it structurally ordered?
We have to first distinguish homogeneous phase from phase-separated states, and then in homogeneous

phases distinguish those which are ordered from those which are not.

2.3.1.1 Motility-induced phase separation

Assemblies of interacting disks at equilibrium are able, in the presence of attractive interactions, to phase
separate between a macroscopic dense phase and a macroscopic dilute phase [123]. This phenomenon is known
as liquid-gas phase separation. The resulting heterogeneity in density can be characterised by computing the
local packing fraction [109, 113, 124]

ϕloc(r, a) =
1

a2

N∑

i=1

π

4
(21/6σi)

2Θ(a− |ri,x − rx|)Θ(a− |ri,y − ry|) (2.26)
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(a) (b)

Figure 2.1: (a) Snapshot of a phase-separated system. Taken from Ref. [22], Fig. 1. The system is athermal
AOUPs with D0 = 100 and τp = 20. (b) Distribution of local packing fraction ϕloc for different Péclet number
Pe = 3P̂e (2.13) at fixed global packing fraction ϕ = 0.65. Taken from Ref. [49], Fig. 2(b). The system is
thermal ABPs, interacting via a WCA potential. Persistence time is fixed τp = τ0/3 and self-propulsion velocity
v0 is varied.

which is the packing fraction in a square box of size a centred around r.
Using a purely repulsive potential (such as WCA (2.17)), it should be impossible to observe liquid-gas

coexistence at equilibrium. Far from equilibrium, because of persistent self-propulsion forces, it is possible
for active systems to phase separate, creating a dense macroscopic cluster surrounded by a dilute gas. This
phenomenon is known as motility-induced phase separation (MIPS) [1]. Persistent particles colliding head-on
are able to arrest each other [125, 126] and can escape this situation only when propulsion forces change, which
happens on the time scale τp [127]. This behaviour can be translated as persistence-induced effective attractive
forces [22, 126, 128], however these forces are not sufficient to trigger phase separation and multi-particle effects
have to be taken into consideration [128]. At sufficient density, if the time for particle to come in contact with
new particles is much smaller than the time to change their propulsions, which implies large persistence length
ℓp (2.12) with respect to the interparticle distance, then particles accumulate, forming dense clusters which
grow with time [129].

Fig. 2.1 shows results from Refs. [22, 49] which consider AOUPs and ABPs respectively. In both of these
systems, MIPS is observed at large persistence and moderate packing fraction. This transition is apparent
in the distribution of local packing fraction ϕloc (2.26) (Fig. 2.1(b)). While this distribution is unimodal at
small persistence length (Pe = 10 in Fig. 2.1(b)), indicating a homogeneous phase, it is bimodal (Pe ≥ 90 in
Fig. 2.1(b)) at large persistence length, indicating a phase-separated state [49, 113, 124]. Moreover, the positions
of the local maxima of the distribution of ϕloc do not depend on the global packing fraction ϕ [49, 109], these
maxima can then be used to delimit the phase-separated region in phase space.

2.3.1.2 Orientational and translational structure

In three dimensions and above, disordered passive liquids have a first-order transition to ordered (crystalline)
solids at low temperatures [130, 131]. In two dimensions, this solidification is a two-step process, where long-
range orientational order emerges before quasi-long-range translational order [44]. Characterising the order
range of these fields necessitates to compute the correlations (i.e. fluctuations) of the orientational and density
field respectively. Short-ranged correlations will be associated with exponential decays to 0 of these correlation
functions, while quasi-long-ranged correlations are associated with algebraic (i.e. power-law) decay to 0. In the
case of long-range correlations, these do not decay to 0 at infinite distance.

Orientational order refers to the ordering of bonds between neighbouring particles. In a perfectly ordered
solid, a given particle i has 6 neighbours j ∈ {1, . . . , 6}, which are located at equal distance and at angles

θj,i =
2π

6
j + θ0 (2.27)

where θ0 corresponds to the orientation of the crystal with respect to some reference axis. Therefore we can
quantify the orientational order around particle i with the (complex) hexatic order parameter [46, 51, 132] or
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(a) (b)

θj,i

Figure 2.2: (a) Local orientation bond-order parameter orientation arg(ψ6,i). (b) Orientational field of a
hard-disk configuration. Taken from Ref. [43], Fig. 3.3.

orientational field

ψ6,i =
1

zi

zi∑

j=1

exp(i6θj,i) (2.28)

where zi is the number of nearest neighbours of i by Voronoi tesselation, and θj,i is the angle between the vector
going from particle i to its j-th neighbour and a reference axis. Therefore, if i has exactly six neighbours with
orientations (2.27) then

ψ6,i = exp(i6θ0) (2.29)

which modulus is 1, indicating perfect order, and argument is 6θ0, indicating the local orientation [43] (Fig. 2.2).
There exists an equivalent indicator in 3D [133, 134].

In order to distinguish a liquid (disordered) from an hexatic (orientationally ordered) or a solid phase
(translationally and orientationally ordered) it is necessary to compute the hexatic order parameter correlation
function

Cψ6ψ6(r) =

〈∑N
i,j=1 ψ6,iψ

∗
6,jδ(r − |ri − rj |)

∑N
i,j=1 δ(r − |ri − rj |)

〉
, (2.30)

which decays exponentially in the liquid phase, algebraically in the hexatic phase [46], and remains non-zero
over large distances in the solid phase [43].

To characterise translational order, we resort to the pair distribution [132]

g(r) =
L2

N2

N∑

i=1

∑

j ̸=i

⟨δ(r − (rj − ri))⟩ , (2.31)

which is non-isotropic for ordered crystalline phases [44]. In these phases, the projection of |g(r)− 1| in a given
direction decays algebraically, and exponentially in translationally disordered phases [44]. In the liquid, g(r) is
isotropic [132] and we will compute

g(r) =
1

2πr

L2

N2

N∑

i=1

∑

j ̸=i

⟨δ(r − |rj − ri|)⟩ (2.32)

the radial pair distribution function. This function derives from the spatial correlations of the density field and
thus provides the unnormalised probability to find another particle at a distance r > 0 away from any particle
[132]. We introduce the Fourier space equivalent of the pair distribution function, the static structure factor

S(k) =
1

N

N∑

i,j=1

⟨exp (−ik · (rj − ri)⟩ = 1 + ρ

∫
dR exp(−ik ·R)g(R), (2.33)

which quantifies the fluctuation of the density field on the length scale λ = 2π/k [132], and is related to the
pair distribution function g via Fourier transform. We assume isotropy so that we can replace S(k) by its
average value S(k) over all different orientations of the vector k (|k| = k). In practice, we average over vectors
k = (2πm/L, 2πn/L) such that m,n ∈ Z, |k| ∈ [k − δk/2; k + δk/2] with δk = 0.1. The first peak of S(k) is at

k∗ = 2π/rnn (2.34)

14



Figure 2.3: Phase diagram at fixed persistence time τp (Pe ∼ v0) of monodisperse thermal ABPs interacting
via a purely repulsive 64-32 Lennard-Jones potential. Taken from Ref. [46], Fig. 1.

Figure 2.4: Pair distribution function g(r) (2.32) for different persistence times τp at fixed packing fraction
ϕ and free-particle self-diffusion constant D0 = Teff . The red line (BD) corresponds to a Brownian system at
temperature T = 1.0. Taken from Ref. [82], Fig. 6(b) (also Ref. [81], Fig. 5(a)).

where rnn corresponds to the typical distance of the nearest neighbour [132]. This distance in dense systems is
usually of the order rnn ∼ 1.

These tools allow to build phase diagrams for monodisperse [46, 88] and polydisperse [76] systems. Models of
self-propelled particles such as ours have three control parameters in the thermodynamic limit N → ∞, therefore
drawing a two-dimensional phase diagram necessitates to choose a cut through the phase space. Previous works
have established, for monodisperse ABPs interacting via purely repulsive potentials, the phase diagram at fixed
self-propulsion velocity v0 (Ref. [88], Fig. 1(a)) and at fixed persistence time τp [46] (Fig. 2.3). For polydisperse
ABPs, the phase diagram at fixed persistence time τp was drawn (Ref. [76], Fig. 2), and we will build later
the phase diagram for AOUPs at fixed free-particle self-diffusion constant D0. At low persistence and packing
fraction, all models have disordered liquid phases, where fluctuations of both the orientational field (2.30) and
the density field (2.32) decay exponentially. At large packing fraction, monodisperse models first experience
a transition from the disordered liquid to an hexatic phase where fluctuations of the orientational field decay
algebraically, and then to a solid phase where fluctuations of the density field decay algebraically [46]. All models
(both monodisperse and polydisperse) exhibit MIPS at large persistence. Moreover, in monodisperse models
at large persistence, the dense cluster of the phase-separated system is either hexatic or solid, consistently
with Ref. [49]. In the polydisperse model, at small persistence and large packing fraction, the dynamics of the
disordered liquid slows down dramatically and the system enters the disordered solid (glass) phase [76], which
has to be characterised with dynamical quantities.

In homogeneous disordered phases, the structure is affected by the persistence time τp of the self-propulsion.
Ref. [81] studies the glass transition in polydisperse AOUPs, and finds significant persistence-induced structural
changes which affect this transition. Fig. 2.4 shows that, at constant free-particle self-diffusion constant D0 and
packing fraction ϕ, the first peak of the pair distribution function sharpens with increasing persistence time τp
as well as shifts to larger distances. The sharpening of the peak informs us that there is an increased adhesion as
particles are more persistently propelled against each other [81]. The shifting of the peak to larger distances is
a consequence of decreasing self-propulsion velocity v0 as τp is increased at fixed D0: particles cannot penetrate
as far into the interaction potential and thus appear stiffer [81]. Ref. [81] (Fig. 6(a)) shows in the meantime
small variations in the positions of the peaks of the structure factor S(k). Since the packing fraction ϕ is kept
constant, we indeed do not expect large variations in the typical distance of the nearest neighbour.
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2.3.2 Does it flow easily?
Knowing how the system flows amounts to quantifying the length and time scales over which the particles

move, and the heterogeneities in these movements.

2.3.2.1 Cage escape and relaxation

Movements of the particles are described by their displacements over a time t

∆ri(t) =

(
∆ri,x
∆ri,y

)
=

∫ t

0

dsvi(s) (2.35)

where the displacement of the centre of mass has been subtracted.
In order to characterise the typical length scale of the movement over a given time t, we compute the variance

of the displacements, also known as mean squared displacement (MSD)

MSD(t) =
1

N

N∑

i=1

〈
|∆ri(t)|2

〉
, (2.36)

which is linked to the velocity autocorrelation function

MSD(t) =
1

N

N∑

i=1

∫ t

0

ds

∫ t

0

ds′ ⟨vi(s) · vi(s′)⟩ . (2.37)

As for the free particle (2.10), the MSD increases as t2 (ballistic) at small times

MSD(t→ 0) ∼ v2t2, v2 =
1

N

N∑

i=1

〈
|vi(0)|2

〉
, (2.38)

which indicates that, at small length and time scales, velocities have not decorrelated from their initial value.
As for the free particle (2.11), it increases as t (diffusive) at large times

MSD(t→ ∞) ∼ 4Dt (2.39)

where D defines the diffusion constant of the system, which indicates that, at large length and time scales,
velocities have decorrelated from their initial value.

Ref. [77] studies how persistent self-propulsion affects the glass transition of hard-core thermal ABPs.
Fig. 2.5(a) shows that at small packing fraction (top curve), the behaviour of the MSD is close to the free-
particle limit (2.9), with the persistence time τp marking the crossover from the initial ballistic to the eventual

(a) (b)

Figure 2.5: (a) Mean squared displacement MSD(t) =
〈
∆r2(t)

〉
as a function of time, for different packing

fractions ϕ = φ increasing from top to bottom, at constant persistence time τp = τ = 102. Taken from Ref. [77],
Fig. 1(b). The system is a Monte Carlo analogue of thermal ABPs with hard-core exclusion. (b) Effective
diffusion constant D as a function of packing fraction ϕ, for different persistence times τp, at constant free-
particle self-diffusion constant D0 = Teff . The red line (BD) corresponds to a Brownian system at temperature
T = 1.0. Taken from Ref. [81], Fig. 2(a). The system is athermal AOUPs interacting via a WCA potential.

16



diffusive regime. As the packing fraction ϕ increases (from top to bottom), there is the emergence and the
stretching of an intermediate sub-diffusive regime, indicating that particles remain close to their initial position
for an extended period of time after the decorrelation of their initial propulsion forces. This behaviour is known
as caging in passive supercooled liquids [64, 77], and leads to a two-step relaxation scenario [132]: first particles
explore and stay within the cage formed by their initial neighbours (β-relaxation), then particles escape their
cage to relax the structure (α-relaxation). A consequence of this localisation of particles for longer periods
of time as the packing fraction is increased is a drop in the effective diffusion constant D. This is the same
effect at play in the AOUP model of Ref. [81] (Fig. 2.5(b)): at large packing fractions ϕ, for all persistence
times considered, small variations of ϕ in linear scale lead to large variations of D on a logarithmic scale. As a
consequence of the underlying non-equilibrium glass transition, the dynamics of the system is unable to relax
its structure at large ϕ [81].

In the potential energy landscape picture, slowing down of the dynamics emerges from the existence of a large
number of meta-stable states. At low temperatures, transitions between these happen through rare activated
events, resulting in slow structural relaxation [53, 135]. Formally, it is temperature which drives this slowing
down [136]. However, increasing the packing fraction also increases the height of the potential energy barriers
the system has to cross, which in turn slows down the dynamics. We thus observe dramatic slowing down of
the dynamics by tuning either of these parameters, in passive systems [136] and in ensembles of self-propelled
particles [81, 82]. In the following we will borrow examples from systems where temperature is decreased at
fixed density, and will extrapolate to the behaviour of system where density is increased at fixed temperature.

In order to characterise the typical time scale of the movement over a given distance λ = 2π/k, we first
compute the self-intermediate scattering function [132]

Fs(k, t) =
1

N

N∑

i=1

⟨cos(k ·∆ri(t))⟩ . (2.40)

At small times, |∆ri(t)| ≪ λ and Fs(k, t) is close to 1. At large times, if all the particles satisfy |∆ri(t)| ≫ λ,
then Fs(k, t) is close to 0. We define the characteristic time τs(k) [137, 138] over which Fs(k, t) relaxes from 1
to 0,

Fs(k, τs(k)) = e−1, (2.41)

which indicates over which time scale the displacements of the particles relax above the length scale λ. By
convention, we define the structural relaxation time scale [82]

τα = τs(k
∗) (2.42)

which characterises the time scale over which the displacements of the scale of the interparticle distance rnn =
2π/k∗ (2.34) relaxes. In dense and disordered passive systems, movements over this length scale corresponds to
cage escapes, which are the elementary structural relaxation events in the system [64]. We can also define the
dynamical overlap

Q(t, a) =
1

N

N∑

i=1

⟨Θ(a− |∆ri(t)|)⟩ (2.43)

where Θ(a − |∆ri(t)|) is 1 if and only if particle 1 moved less than a length scale a over time scale t and 0
otherwise. It is thus analogous to Fs in that it indicates over which time scale the displacements of relax above
the length a [139, 140].

The two-step relaxation scenario picture by the MSD (Fig. 2.5(a)) is mirrored in the self-intermediate
scattering function Fs (Ref. [79], Fig. 5(d), same system of athermal AOUPs as Ref. [81]). At high temperatures,
displacement over the length scale of the interparticle distance happens on time scales comparable to the
persistence time, i.e. right after the initial ballistic regime. At small temperatures, the self-intermediate
scattering function crosses over to a regime of very slow decay after the initial ballistic regime. This is a
consequence of particles remaining close to their initial position for an extended period of time [132]. Eventually
particles are able to escape and the whole structure relaxes on the time scale τα large compared to the persistence
time τp.

Disordered solids in two dimensions are subject to Mermin-Wagner fluctuations [141], which are long-
wavelength density fluctuations. In large systems, these may affect measures based on the sole displacements of
individual particles over the scale of the interparticle distance [139]. In order to recognise cage-escape events,
it is thus necessary to consider displacements of the particles with respect to their cage, i.e. to their initially
neighbouring particles. Given Ni(0) the ensemble of nearest neighbours of particle i at time t = 0 (e.g. de-
termined via Voronoi tesselation, or particles within a given interaction radius at initial time), we define the
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cage-relative displacement

∆CRri(t) = ∆ri(t)−
1

#Ni(0)

∑

j∈Ni(0)

∆rj(t) (2.44)

where #Ni(0) is the number of elements in Ni(0). We can compute their variance (similarly to (2.36)), and the
characteristic time scales of these displacements from the corresponding self-intermediate scattering function
(similarly to (2.40)).

Another consequence of cage escapes is that particles change their local environment, with initially neigh-
bouring particles leaving their neighbourhood. It is thus possible to characterise the time scale over which the
structure relaxes by following the number of particles still close to their initial neighbours. We introduce the
bond-breaking correlation function [142]

Cb(t) =

〈∑N
i,j=1 Θ(|rj(t)− ri(t)|/σij −A2)Θ(A1 − |rj(0)− ri(0)|/σij)

∑N
i,j=1 Θ(A1 − |rj(0)− ri(0)|/σij)

〉
(2.45)

which quantifies the percentage of pairs of particles i and j whose scaled distance |rj − ri|/σij is below A1

(bonded) at t = 0 and above A2 at t (unbonded). In order to avoid noise in the form of short-time oscillations,
we use A2 > A1 [143].

2.3.2.2 Dynamical heterogeneity

Relaxation in dense and disordered systems is dynamically heterogeneous [54, 59, 144]. On time scales
corresponding to the relaxation time scale τα, there is a clustering of particles with respect to their mobility: in
some regions of the systems particles have moved large distances compared to the interparticle distance, while
in other regions of the systems particles almost have not moved. Relaxation is heterogeneous in both time and
space.

On the one-particle level, it can be uncovered via the distribution of displacements, or self part of the van
Hove function [56, 144]

Gs(r, t) =
1

2N

N∑

i=1

⟨δ(r −∆ri,x) + δ(r −∆ri,y)⟩ . (2.46)

This function is the distribution of algebraic displacements along any direction (assuming isotropy) and not of
their norms. At small times t→ 0, this distribution matches the distribution of the velocities (2.59). In passive
(equilibrium) systems, the latter is the Maxwell-Boltzmann distribution, i.e. Gaussian. At large time t ≫ τα,
the distribution of the displacements is also Gaussian [144, 145]. On intermediate time scales, the distribution
has a Gaussian central part with exponential tails, where movements inside the cage populate the central parts,
and relaxation movements (cage escapes) populate the tails [146].

On the multi-particle level, dynamical heterogeneities can be uncovered with four-point correlation functions
[54]. Given a dynamical observable oi(t), i.e. which characterises the mobility of particle i over time t, we define
its four-point correlation function [140, 147]

G4(r, t) =
1

N

N∑

i,j=1

[⟨oi(t)oj(t)δ(r − (rj(0)− ri(0)))⟩ − ⟨oi(t)δ(r)⟩ ⟨oj(t)δ(r)⟩] (2.47)

which indicates the degree to which particles at an initial separation of r have correlated mobilities [54]. We
introduce the spatial integral of this quantity, known as dynamical susceptibility

χ4(t) =

∫
d2rG4(r, t) = N



〈∣∣∣∣∣

1

N

N∑

i=1

oi(t)

∣∣∣∣∣

2〉
−
〈

1

N

N∑

i=1

oi(t)

〉2

 (2.48)

which is related to the typical number of particles involved in correlated motion, or equivalently the size of
correlated clusters [54].

Ref. [145] (Fig. 5(c)) illustrates, for passive particles, that for times small or large compared to the relaxation
time scale τα the distribution of displacements is Gaussian. On time scales comparable to τα then this distri-
bution shows the existence of two distinct sub-groups of particles, with the small-distance travelling particles
being those which stayed within their cage (immobile particles), and the large-distance travelling particles being
those which have relaxed relaxed their local structure by escaping their cage (mobile particles) [145]. This het-
erogeneity of the dynamics on time scales comparable to τα, with different populations of mobile and immobile
particles, is also illustrated by the dynamical susceptibility χ4 (Fig. 2.6, same system of athermal AOUPs as
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Figure 2.6: Dynamical susceptibility (2.48) computed from oi(t) = cos(k∗ ·∆ri(t)), i.e such that Fs(k∗, t) =
(1/N)

∑N
i=1 ⟨oi(t)⟩, as a function of time, at constant persistence time τp and packing fraction ϕ, and different

packing fraction free-particle self-diffusion constant D0 = Teff . Taken from Ref. [79], Fig. 14(d). The system is
athermal AOUPs interacting via a WCA potential.

Ref. [81]). At small (resp. large) times, the system is homogeneously composed of immobile (resp. mobile)
particles, therefore the variance in (2.48) cancels. On time scales comparable to the relaxation time scale τα,
the dynamics is maximally heterogeneous and χ4 peaks [79]. As the dynamics slows down, i.e. as τα increases,
then the height of the peak in χ4 also increases. This indicates that the relaxation is spatially correlated over
a length scale which increases as the dynamics slows down [54, 79].

2.4 Emergence of velocity correlations

At equilibrium, in virtue of the Maxwell-Boltzmann distribution, positions and velocities are independent,
therefore it is impossible to observe velocity correlations in space. Out of equilibrium, this does not have to
hold, and there have indeed been several reports of extended velocity correlations in dense systems of self-
propelled particles [82, 113, 124]. More recently, several analytical derivations were brought forward to explain
the emergence of these correlations, in active crystals [88], glasses [35], and liquids [103].

In this Section, we will follow the reasoning of Ref. [35] to show how the competition between persistent
forcing and particles’ crowding leads to velocity correlations, and then explore some properties of these corre-
lations.

2.4.1 Harmonic description of the dynamics
In order to understand the emergence of velocity correlations in dense systems of self-propelled particles, it

is useful to first consider the case of a single AOUP in a 1D harmonic potential

ṙ = −τ−1
0 r + p, (2.49a)

τpṗ = −p+
√
2D0η, (2.49b)

where η is a unit-variance zero-mean Gaussian white noise. Following Ref. [148], we write the Fokker-Planck
equation [106] from (2.49)

∂

∂t
Prob(r, p, t) = − ∂

∂r

[
(−τ−1

0 r + p)Prob(r, p, t)
]
− ∂

∂p

[
−τ−1

p Prob(r, p, t)
]
+

∂2

∂p2
[
D0/τ

2
pProb(r, p, t)

]
(2.50)

which we solve in the stationary case ∂tProb(r, p) = 0 with the hypothesis

Prob(r, p) ∝ exp(−ar2 − bp2 − cxp) (2.51)

and find

a =
(τ0 + τp)

2

2D0τ30
, b =

τp(τ0 + τp)

2D0τ0
, c = −τp(τ0 + τp)

D0τ20
. (2.52)

This stationary distribution of the position and propulsion enables us to compute the mean elastic energy in
this harmonic mode 〈

1

2
τ−1
0 r2

〉
=
D0

2

1

1 + τp/τ0
. (2.53)
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We recover the equipartition of elastic modes in the limit τp ≪ τ0, i.e. the equilibrium limit. On the opposite
limit τp ≫ τ0 〈

1

2
τ−1
0 r2

〉
=

τp≫τ0

D0

2

1

τ−1
0 τp

(2.54)

we have a violation of the equipartition theorem. Moreover (2.54) indicates first that the softer the mode (i.e.
the smaller τ−1

0 ) the larger its elastic energy, and second that this favouring of softer modes increases with
increasing persistence time τp.

We can use this result with an ensemble of AOUP by making a linear expansion of (2.15) around a local
minimum of U 


ṙ1
...

ṙN


 = −H




r1
...

rN


+




p1
...

pN


 (2.55)

where we introduce the Hessian matrix
Hij = ∂ri∂rjU. (2.56)

Eq. (2.55) is a set of N equations in the form of (2.49) when projected onto the eigenmodes of H. We will
denote its eigenvalues τ−1

0,k . An important observation is that the lower τ−1
0,k the more spatially extended the

corresponding eigenmode [58, 149–151], therefore the most extended modes which are the softest modes are the
most favoured by the persistent dynamics. It is this mechanism, in which a persistent active force is applied to
an elastic sheet formed by the packing of particles, which is at the origin of velocity correlations.

There are other ways of linearising the dynamics. Ref. [35] suggests to rewrite (2.15) for a dense packing
packing of polydisperse ABPs in a continuum elastic formulation, which in Fourier space involves the dynamical
matrix whose eigenvalues depend on the elastic moduli of the system. Ref. [88] proposes to take the Fourier
transform of (2.15) using the crystalline symmetry of their dense monodisperse system and doing a harmonic
approximation of the interaction potential U . Ref. [103] proceeds similarly as Ref. [35] for dense ABPs but uses
the Fourier transform of the virial part of the pressure tensor which is linearised around the average density. We
also point out the existence of Ref. [104] which develops an involved hydrodynamic theory, and whose results
are qualitatively consistent with Refs. [35, 103].

We classify these proofs in two categories. First the proofs which share the similarity that the dynamics is
considered as a (persistent) perturbation of a local quadratic minimum of the interaction potential U [35, 88],
such that e.g. the eigenmodes and eigenvalues of H do not change with time and thus we can take the average
in (2.53). This assumption should hold under two conditions. First, the displacements must be small. This
implies that the self-propulsion force ξv0 itself is small. Second, the time spent inside a minimum should be
much larger than the time to decorrelate the propulsions. This should be satisfied if the relaxation time (2.42)
τα ≫ τp [35]. Then there are hydrodynamic theories [103, 104] which partly rely on uncontrolled hypotheses, it
is thus not possible for the moment to exactly identify their framework of applicability. We note however that
part of their results are consistent with the former class of theories, which highlights the universality of these
findings.

2.4.2 Emerging scales of velocity correlations

In this Section, we will review the literature around the properties of the velocity field in dense systems
of self-propelled particles. We will first describe its correlations in space (two-particle quantity) and in time
(single-particle), and then the one-particle velocity distribution.

There are two kinds of correlations which we aim to characterise: correlations in space which are quantified
by correlation functions of the form of

Cvv(r) =
1

(1/N)
∑N
i=1 ⟨|vi(0)|2⟩

〈∑N
i,j=1;i ̸=j vi(0) · vj(0) δ(r − |rj(0)− ri(0)|)

∑N
i,j=1;i̸=j δ(r − |rj(0)− ri(0)|)

〉
(2.57)

which is 1 at r = 0 by definition and decays over a characteristic finite length scale ξv known as the velocity
correlation length, and correlations in time which are quantified by autocorrelation functions of the form of

Cv(t) =

〈∑N
i=1 vi(0) · vi(t)∑N
i=1 |vi(0)|2

〉
(2.58)

which is 1 at t = 0 by definition and may decay on several different time scales. We expect these correlation
functions to be strictly decreasing functions of distance and time respectively. Velocity correlation lengths ξv
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(a) (b)

Figure 2.7: (a) Snapshot of the system where each disk represents a particle, with the colour corresponding
to the orientation of its velocity arg(vi). Taken from Ref. [88], Fig. 3(d). (b) Velocity correlation function
as a function of r, of the form of (2.57), for different packing fractions ϕ, at fixed persistence time τp = τ
and free-particle self-diffusion constant D0. Taken from Ref. [88], Fig. 5(d). The system is athermal ABPs
interacting via a WCA potential.

can be computed either by thresholding the correlation function [152], i.e. determining the distance above which
the correlation function is below a given threshold, or fitting the correlation length to some expected functional
form in real space [35] or Fourier space [103].

We follow Ref. [88] which studies the emergence of velocity correlations in dense and persistent systems of
ABPs. We show an example for the velocity field in Fig. 2.7(a). The velocity correlation length ξv characterises
the size of the patches of aligned velocities, i.e. single-colour patches. We showed in the previous Section that
the velocity correlations emerge from the persistent forcing (on a time scale τp) of the elastic medium formed
by the dense packing of particles. In a continuum elastic description [35, 153], the properties of this elastic
medium is described by elastic moduli (longitudinal and transversal). Thus, the correlation length is expected
to increase with increasing elastic moduli of the system [35, 103] (or increasing curvature of the potential [88]),
and increasing persistence time τp [35, 81, 82, 88, 103]. This is confirmed by Fig. 2.7(b) where the correlation
length increases with increasing packing fraction ϕ [88].

Ref. [35] indicates that there are two different kinds of time scales over which the velocity correlations in
time (2.58) decays. First there are the harmonic time scales associated with the relaxation in the quadratic
expansion around the potential energy minimum. Then there is the persistence time τp which is the time
scale over which the propulsion forces evolve. It is noteworthy that in Ref. [35], the expression for the velocity
autocorrelation function (2.58) (Eq. 57 in Supplementary Material) converges if and only if the persistence time
is smaller than the harmonic time scales. This is consistent with the assumption in Sec. 2.4.1 that propulsion
forces should change on time scales which are smaller (i.e. faster) than the time scale on which configurations
change. Finally, we highlight that Ref. [154] provides an other connection between the propulsion dynamics
and the elastic properties of the system, showing that the fluidisation of an active glass happens when the
persistence time τp coincides with the characteristic time scale of the most unstable direction in the energy
potential landscape.

Non-equilibrium properties may also appear in the distribution of algebraic velocities along any direction
(assuming isotropy)

Prob(v) =
1

2N

N∑

i=1

⟨δ(v − vi,x(0)) + δ(v − vi,y(0))⟩ . (2.59)

This distribution is characterised by its variance v2 =
〈
|vi|2

〉
/2 (2.38), which sets the typical value of the veloc-

ity. In a free system, where the velocity equals the self-propulsion force (2.2), this variance is half the variance
of the self-propulsion force, i.e. v20 . At equilibrium, in virtue of the Maxwell-Boltzmann distribution, velocities
should be normally distributed. This does not have to hold out of equilibrium (τp > 0). Deviations from the
Gaussian behaviour can be quantified via different non-Gaussian parameters [144, 145, 155]. These parameters
appear as ratios of fourth-order and second-order moments, which are trivial for Gaussian distributions. The
larger these parameters are the more important large values of the velocities are compared to their normal
distribution.

At large persistence time τp, the speed of particles becomes negligible compared to the self-propulsion velocity
[35, 156]. This indicates that, at large persistence, the interaction forces counter-balance the self-propulsion
forces, hence a decrease of the velocity variance. This is supported by Fig. 2.8 (same model of athermal ABPs
as Ref. [88]), which shows that, as the typical velocity of the particles plummets, the typical interaction force
soars up to the value of the self-propulsion velocity. Moreover, at large persistence, the distribution of velocities
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Figure 2.8: Typical velocity amplitude ⟨|vi(0)|⟩ and typical force amplitude ⟨|F i(0)|⟩ = ⟨|∇iU(0)|⟩ as functions
of τp, for fixed v0 and ϕ. Taken from Ref. [156], Fig. 2. The system is athermal ABPs interacting via a WCA
potential.

departs from a Gaussian behaviour and develops fat tails, indicative of the non-trivial influence of many-body
interactions in persistent liquids [156, 157].

2.5 Scales and emerging behaviour

We have introduced a model of overdamped particles (2.15). On each of these particles acts an independent
self-propulsion force pi (2.16) with a characteristic time scale of evolution τp (2.7), and a characteristic amplitude
which in turn leads to a free-particle self-propulsion velocity v0 (2.10). These scales define a length scale ℓp = v0τp
(2.12) which corresponds, for a free particle, to the distance travelled before losing memory of its initial velocity.
These scales have to be compared with other characteristic scales of the model (2.14): the interaction time scale
τ0 (1 in our units) which sets the time to relax two-particles interactions, and the typical length between two
particles which we expect to be of the same order of the average diameter of a particle σ (1 in our units) in a
dense system.

At small persistence τp ≪ τ0, the time over which an individual propulsion changes is smaller than the time
over which the interaction between two particles changes. Therefore, on the time scale τ0, the self-propulsion
force acts as an effective zero-correlation white noise. This corresponds to the Brownian limit, and the system
acquires equilibrium properties such as the Maxwell-Boltzmann distribution, or the equipartition of elastic
modes. On the contrary, at large persistence τp ≳ τ0, on the time scale over which the interaction between
two particles changes the individual particles keep a memory of their previous propulsion force. This leads to
non-trivial behaviour such as the emergence of velocity correlations in space and time, non-Gaussian velocity
distributions, and plummeting velocity variance. Moreover, in the case where ℓp ≫ σ, i.e. when particles
move ballistically between collisions, they are able to accumulate, leading to a non-equilibrium transition to a
phase-separated state known as MIPS, despite the absence of explicit aligning interactions.

On top of these two fundamental time scales (the persistence time τp and the interaction time τ0), the
dynamics of dense systems is also characterised by a third, emerging time scale, the relaxation time τα (2.42).
This is the time scale on which the structure of the system relaxes, i.e. on which particles lose memory of their
initial neighbours. In equilibrium and small-persistence systems, dynamics over this time scale is maximally
heterogeneous, with a clustering of particles with respect to their mobility: mobile regions where particles have
moved large distances compared to their own diameters, and immobile regions where particles have kept their
initial neighbours.

We will explore during the remainder of this Thesis which collective motions emerge from the competition
between these time scales (τp, τ0, and τα), and the associated underlying mechanisms.
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3 | Phase diagram of polydisperse AOUPs

In this Chapter, we will build the phase diagram of polydisperse AOUPs interacting via a WCA potential.
We recall that there are, in the thermodynamic limit N → ∞, three control parameters in our model. In order
to present only a two-dimensional phase diagram, we have to decide a cut through parameter space. We decide
to build the phase diagram at constant free-particle self-diffusion constant D0 = 1, and thus draw the diagram
in the space spanned by the packing fraction ϕ and the persistence time τp. We will discuss this choice in
Sec. 3.3.

We will first delineate the region where the system is homogeneous. We will then delimit the domain where
the system is dynamically arrested, and characterise the orientational and translational order in this phase. We
will finally present the phase diagram in the space of constant D0, and discuss this choice of a cut through
phase space. This program parallels the one already undertaken for monodisperse particles [46, 49, 88]. It is
noteworthy that our model model includes an interaction potential which, in contrast to polydisperse harmonic
potentials [76], diverges at the origin. This enables us to study crowded systems of self-propelled particles at
large persistence where interaction forces are able to be of the same order of propulsion forces.

Some of the results of this Chapter were published in Ref. [158].
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3.1 Motility-induced phase separation

We expect the system to spontaneously phase separate when the persistence length ℓp =
√
D0τp is large

compared to the typical distance between particles (of order 1) [1, 129] (see Sec. 2.3.1.1).
In order to determine if the system is homogeneous or phase-separated, we measure the distribution of

the local packing fraction ϕloc (2.26) [49, 109, 113]. In practice, we exploit the fact that the positions of
the local maxima of the ϕloc-distribution do not depend on the global packing fraction ϕ [49, 109]. We thus
generate steady-state configurations for different persistence times τp at constant ϕ = 0.50 in which we measure
histograms. From these histograms, we extract the positions of the local maxima when the distribution is
bimodal as functions of the persistence time (ϕmin

loc (τp), ϕ
max
loc (τp)). At a given τp for which these local maxima

exist, the system will thus be phase-separated if the global packing fraction satisfies ϕmin
loc (τp) < ϕ < ϕmax

loc (τp).
We observe that the distribution Prob(ϕloc) is bimodal only if τp > 102, i.e. ℓp > 10, which is consistent with
the condition of a large persistence length compared to the typical interparticle distance in order to observe
MIPS [1, 129].

It is expected that the MIPS existence region ends in a critical point at low τp [159]. The precise character-
isation of this critical point necessitates a finite-size scaling analysis. Since our interest is in the homogeneous
dense phase and not the phase-separated state, this precise characterisation is outside of the scope of our study.
A consequence of the existence of this critical point is that fluctuations of the local packing fraction are large
close to it. For a given number of particles N , we may thus only see a broad distribution of local packing frac-
tions ϕloc and not a clear bimodal distribution. This thus limits our ability to circumscribe the phase-separated
region at small τp. Away from the critical point, and if the system is large enough, we expect that the properties
of the bulk dense cluster to be representative of the dense homogeneous system at ϕ = ϕmax

loc (τp) [160, 161].

3.2 Dynamical arrest

We expect at large packing fraction ϕ that the dynamics of the system is unable to relax its structure, and
the system thus goes from a liquid to an arrested glass (see Sec. 2.3.2). To confirm this scenario, we follow the
dynamics of the system with the MSD (2.36), see Fig. 3.1(a, b). At small persistence time (τp = 10−2), the
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Figure 3.1: (a, b) Mean squared displacement (2.36) at fixed persistence time τp for different packing fractions
ϕ. (c) Effective diffusion constant D (2.39) rescaled by the free-particle self-diffusion constant D0 as a function
of packing fraction ϕ for different persistence times τp. Dashed lines correspond to fits to (3.1). These were
obtained at fixed γ = 3. Parameter values: N = 1024, D0 = 1, (a) τp = 10−2, (b) τp = 102..
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Figure 3.2: Cage-relative mean squared displacement MSDCR(t) =
〈
|∆CRri(t)|2

〉
(2.44). Parameter values:

N = 1024, D0 = 1, (a) τp = 10−2, (b) τp = 102. Packing fractions are identical to Fig. 3.1.

dynamics slows down as ϕ is increased. This can be seen through the emergence of an intermediate subdiffusive
regime (also referred to as plateau [144]), in between the initial ballistic regime and eventual diffusive regime,
which extends further as ϕ is increased. This regime corresponds to caging [79, 82] and as a consequence the
effective self-diffusion constant D(ϕ) drops significantly with respect to its ϕ→ 0 limit D0. At large persistence
time (τp = 102), we recover a similar scenario, with the emergence and extension of an intermediate subdiffusive
regime, and the associated drop in D(ϕ). A major difference however resides in the fact the velocity variance v2
(2.38) also drops significantly. This has major consequences for the relaxation dynamics which we will explore
in Chap. 4.

As in equilibrium systems, the determination of a critical packing fraction for dynamic arrest is ambiguous
[162]. We will give an estimation of this liquid-glass boundary ϕc(τp) by fitting the effective diffusion constant
D(ϕ) to an algebraic form inspired by mode-coupling theory,

D(ϕ) ∼ (ϕc(τp)− ϕ)γ , (3.1)

at large ϕ. We stress that this boundary represents a lower bound for the real critical packing fraction [162].
Indeed, if we had the computational ability and/or time to simulate the steady state of denser liquids then this
limit would shift to larger packing fractions. We plot in Fig. 3.1(c) the diffusion constant as a function of the
packing fraction D(ϕ) for different persistence times τp alongside with the fit to (3.1). All the systems have the
same free-particle self-diffusion constant D0, therefore their rescaled diffusion constant D(ϕ)/D0 have to go to
1 as ϕ → 0. We observe, in the range of persistence times explored here, that the critical packing fraction ϕc
decreases with increasing τp. However, this may not always be the case, depending on the specific value of D0

[81].
Not all glasses vitrify in the same way, and this is qualitatively evaluated by their fragility [67, 122, 163].

Strong glasses solidify gradually, and their relaxation time τα follows an Arrhenius law log τα ∼ 1/T (where T
is the temperature). Fragile glasses solidify more abruptly, in a super-Arrhenius fashion. A study on athermal
AOUPs found that fragility would increase with increased persistence time τp [79]. It would be possible to study
fragility in our system, not as a function of temperature but as a function of packing fraction ϕ. Fig. 3.1(c)
seems to indicate that the decrease in effective diffusion constant is faster (and thus systems are more fragile) as
the persistence time is increased, possibly because both the intermediate-time localisation and the drop in the
velocity variance decrease the diffusion constant. This behaviour should be mirrored by the relaxation time τα
even though we should expect deviation from the Stokes-Einstein law and thus that D and τα are not exactly
inversely proportional [67, 79]. Because of the lack of data, especially at very high relaxation time τα, we were
not able to quantitatively characterise the fragility of our system with varying persistence time τp.
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Figure 3.3: Snapshots of the hexatic order parameter ψ6,i (2.28). (a, c) Modulus of hexatic order parameter
|ψ6,i|. (b, d) Argument of the hexatic order parameter arg(ψ6,i). Parameter values: N = 1024, D0 = 1,
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Figure 3.4: Rescaled pair distribution function gσ(r) (3.2) at fixed persistence time. In each plot, packing
fraction increases from the rightmost curve (blue) to the leftmost curve (red). Parameter values: N = 1024,
D0 = 1, (a) τp = 10−2: ϕ = 0.1 to 1.1, (b) τp = 100: ϕ = 0.1 to 0.98, (c) τp = 101: ϕ = 0.1 to 0.94, (d) τp = 102:
ϕ = 0.1 to 0.89.

As in equilibrium, this transition from a liquid of polydisperse particles to an arrested solid is not accom-
panied by the emergence of hexatic or translational order [52, 132]. In order to (qualitatively) compare the
evolution of structural order and dynamics, we plot in Fig. 3.3 the hexatic order parameter ψ6,i (2.28) for two
large-persistence systems (D0 = 1, τp = 102) at two different densities: ϕ = 0.84 (D = 6×10−3) and ϕ = 0.8825
(D = 6×10−8). Here, a decrease of 5 orders of magnitude of the diffusion constant D(ϕ) is not accompanied by
a significant change in the correlations of the hexatic order parameter, and thus the system remains isotropic.
We quantitatively probe the structure of the disordered liquid with the pair correlation function g(r) (2.32).
The position of the first peak of g(r) is associated to the distance of the first shell of close neighbours while its
width informs us about the inherent disorder in the system [132]. It is common practice for binary systems (i.e.
polydisperse systems with two different diameters) to decompose g(r) into different correlations between pairs
of particles with constrained diameters [79, 144]. Our own system is continuously polydisperse therefore such
an analysis in not possible. We therefore consider a rescaled pair distribution function based on the interaction
range

gσ(r) =
1

2πr

L2

N2

N∑

i=1

∑

j ̸=i

⟨δ(r − |rj − ri|/σij)⟩ , (3.2)

such that the position of the first peak informs us about how deep neighbouring particles are into their interaction
potential.

We plot in Fig. 3.4 the rescaled pair distribution function gσ(r) (3.2) for increasing packing fraction ϕ from
right to left, and increasing persistence time τp from left to right. As τp is increased, the first peak of gσ(r) both
shifts to larger distances and becomes narrower. This is already explained by the fact that as τp increases at
fixed D0, the self-propulsion force ξv0 becomes smaller and thus particles appear stiffer and penetrate less each
others and the peak shifts to larger distances [81]. Moreover, there is an increased adhesion as particles become
more persistent, resulting in an enhanced peak [81]. More surprisingly, we observe that at large persistence
time, the height of the peak strongly decreases with increasing packing fraction ϕ. We observe a weak increase
of the height of the peak at small persistence time. This rules out the development of translational order with
increasing ϕ, as the latter would on the contrary enhance the peaks of the pair distribution [51].

For the persistence times we have considered, we always measured ϕc(τp) > ϕmax
loc (τp), which implies that

the dense cluster of MIPS, even at high persistence time, is not a solid as observed for monodisperse systems
[46, 49]. We bring further evidence of this by characterising the dynamics of the dense cluster of MIPS, via the
self-intermediate scattering function Fs (2.40), as a function of the persistence time τp. In order to consider only
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Figure 3.5: (a) Self-intermediate scattering function F dense
s (2.40) in the bulk dense phase of phase-separated

systems. (b) Relaxation time τdenseα (2.42) in the bulk dense phase of phase-separated systems, rescaled by the
persistence time τp as a function of the persistence time τp. Parameter values: N = 16384, D0 = 1. Markers
and colours correspond to the systems in both panels.

particles belonging to the bulk of the dense phase, we simulate systems at packing fractions ϕ ≲ ϕmax
loc (τp) and

compute for the ensemble of particles i the local packing fraction ϕloc(ri(t), a = 5) at time t. We identify all
particles which, at some time t, have a local packing fraction ϕloc < 0.30, and particles which are at a distance
smaller than d = 20 of the former at time t. The resulting set of particles is subtracted from the ensemble of
particles and we compute the self-intermediate scattering function F dense

s (2.40) only considering the remaining
particles. We checked qualitatively on simulation snapshots that the remaining ensemble of particles does not
contain gas bubbles. We plot in Fig. 3.5(a) these scattering functions. We observe in the bulk region of the
dense cluster of MIPS that movement on the scale of the interparticle distance happens on time scales which are
smaller than the persistence time, i.e. τα ≲ τp. Moreover, the ratio τα/τp decreases with increasing persistence
time (see Fig. 3.5(b)), indicating that the dynamics in the dense cluster of MIPS becomes faster on the scale of
τp as the latter increases.

3.3 Conclusion: phase diagram

We use the packing fraction boundaries of the MIPS region, and the critical packing fraction for the non-
equilibrium glass transition (see Fig. 3.1(c)), to plot the phase diagram of our system in Fig. 3.6.

The most exciting feature in this phase diagram is that, because regions of phase-separated systems and
arrested systems do not overlap, it is possible to observe a disordered flowing liquid at large persistence time
τp ≫ τ0 and moderate packing fraction ϕmax

loc < ϕ < ϕc.
We expect the specific value of D0 to change the shape of the non-equilibrium glass transition line [81, 82]

and also the shape of the MIPS boundary [76]. However, the separation of the MIPS and glass regions should
hold. This conclusion comes from the fact that the dynamics in the MIPS dense cluster on the one hand (which
we consider to be representative of the dynamics of the bulk system with the same packing fraction ϕmax

loc ), and
the dynamics close to dynamical arrest on the other hand, correspond to two different limits. Fig. 3.5 shows
that, for the former, movements over the scale of the interparticle distance rnn ∼ 1 happens on time scales
τα ≲ τp. Fig. 3.1(a, b) shows that on the contrary, close to dynamical arrest, movement over the scale of rnn
happens on time scales at which the initial propulsions have decorrelated, thus τα ≫ τp. Therefore, MIPS and
the arrested glass regions should remain distinct irrespectively of our free-particle self-diffusion constant D0,
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100
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104

τ p
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MIPS arrested
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Figure 3.6: Phase diagram at D0 = 1. We only sketch the critical point of MIPS, its precise characterisation
requiring a more detailed analysis [159].
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and the features of our phase diagram thus do not depend on D0.
We now seek to explore the behaviour and properties of the dense and persistent active liquid. We will

review in Chaps. 4, 5 the limit τα ≫ τp on the path to dynamical arrest, and is Chap. 6 the limit τα ≲ τp.
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4 | Structural relaxation in dense and persistent
liquids

Activity is at the origin of non-equilibrium behaviours such as macroscopic phase separation in the absence
of attractive potential (MIPS) [1, 46, 109, 125, 127] and mesoscopic velocity correlations [35, 88, 103, 156].
These phenomena have non-trivial influence on the dynamics of dense systems of self-propelled particles. Per-
sistent forces propel particles against each other resulting in more localised neighbourhoods of particles [81].
In monodisperse systems this leads to the formation of ordered solids [46, 49, 51]. In passive polydisperse
systems, enhancement of the structure is generally associated with slower dynamics, predicted for example by
theories such as the mode-coupling theory (MCT) [64]. In active polydisperse systems, this enhancement of the
structure is accompanied by the emergence of velocity correlation which, on the contrary, fluidifies the system
[78, 81, 164]. Other theories such as an active version of random first-order transition (RFOT) theory [83, 87]
have sought to capture the influence of activity on the non-equilibrium glass transition. The major issue in
these theories is that, at large persistence, it is difficult to disentangle (non-linear) crowding effects at the origin
of the slowing down and the propulsion-induced collective motion of particles [83].

We propose a microscopic study of the slow structural relaxation of dense systems of persistent self-propelled
particles to tackle the question: how do non-equilibrium velocity correlations influence the slow dynamical
relaxation close to the glass transition? We will first explore the properties of the emerging velocity correlations
in the large-persistence limit. We will then discuss the mechanisms of relaxation available to dense systems of
self-propelled particles in this limit.

Some of the results of this Chapter were published in Ref. [158].
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4.1 Emerging velocity correlations

We have identified the existence of a dense liquid at large persistence τp ≫ τ0 (see Sec. 3.3). In this Section,
we discuss several of its non-equilibrium properties.

We plot in Fig. 4.1(a) the scaled velocity variance v2/2v20 (2.38, 2.10) as a function of the persistence time τp
and the packing fraction ϕ. In Fig. 4.1(b), we compare the distributions of velocities Prob(v) (2.59) for different
ϕ at large persistence (D0 = 1, τp = 103). In equilibrium systems, velocities are spatially uncorrelated and
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Figure 4.1: (a) Scaled velocity variance v2/2v20 (2.38, 2.10) as a function of the persistence time τp and the
packing fraction ϕ. (b) Distributions of velocities Prob(v) (2.59) for different ϕ at large persistence. Parameter
values: D0 = 1, (a) N = 1024, (b) N = 4096, τp = 103.
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Figure 4.2: (a) Snapshot of the velocity field at time t = 0. Colours indicate the norm and arrows their
direction. (b) Snapshot of the displacement field at time t/τp = 0.11 (MSD(t) = 0.16). Colours indicate the
norm and arrows their direction. (c) Velocity correlations in space Cvv(r) (2.57). (d) Velocity correlations in
time Cv(t) (2.58). Parameter values: N = 4096, D0 = 1, τp = 103, (a, b) ϕ = 0.84.
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Figure 4.3: (a) Velocity correlations in space Cvv(r) (2.57). (b) Velocity correlations in time Cv(t) (2.58).
Parameter values: N = 4096, D0 = 1, ϕ = 0.84.

obey the Maxwell distribution with a variance v2 (2.38) independent of the packing fraction ϕ. The situation
is very different in persistent systems, where both the variance and the shape of the distribution are modified.
First, the variance v2(ϕ) decreases sharply with ϕ (see Fig. 4.1(a)). We have previously shown that persistent
particles stick to each other, which causes an enhancement of the structure (see Sec. 3.2). Another consequence
of this sticking is that particles are able to arrest each other and thus the variance of the velocity decreases. At
large ϕ and τp, we thus observe that v2 ≪ 2v20 =

〈
|pi|2

〉
, hence the velocity term is negligible in (2.15). Second,

the velocity distributions are strongly non-Maxwellian with much broader tails (see Fig. 4.1(b)), even though
a normal distribution is expected both for interacting equilibrium particles and for non-interacting Ornstein-
Uhlenbeck particles. Our observation of these fat-tailed distribution with reduced variance is consistent with
the expectation that v2 is coupled to the local curvature of the interaction potential [156, 157]. Hence the
measured distributions reveal the non-trivial influence of many-body interactions in persistent liquids.

As predicted in the literature [35, 36, 78, 79, 88, 103], persistent propulsions in the homogeneous liquid
produce spatial velocity correlations, which we quantify in Fig. 4.2(c) via the velocity correlation in space
(2.57). The data clearly reveal the existence of correlations extending over a length scale ξv which grows with
ϕ and τp (see Fig. 4.3(a)). The corresponding real-space correlations extend over several particle diameters,
as illustrated in Fig. 4.2(a). We use the velocity autocorrelation function Cv(t) (2.58) to characterise time
fluctuations. Fig. 4.3(b) shows that these decay over a timescale that depends strongly on the persistence time
τp (and weakly on ϕ, see Fig. 4.2(d)).

Such correlated velocity patterns have no equilibrium analogue. They can be rationalised via the coupling of
collective elastic modes and highly-persistent active forces [35] (see Sec. 2.4). At equilibrium, excitation of these
elastic modes by thermal fluctuations affects displacements in two-dimensional passive glasses, a phenomenon
known as Mermin-Wagner fluctuations [141, 165]. In order to assess the effect of these fluctuations, it is useful
to consider the displacements of the particles with respect to their initial neighbours (their cage) (2.44), and
compute their variance, i.e. the cage-relative MSD. The comparison between the MSD and its cage-relative
counterpart (see Figs. 3.1(a, b), 3.2) reveals that these two quantities are fairly similar. We thus conclude that
the relaxation motion of particles in dense systems is not controlled primarily by long wavelength modes. This
also confirms that (absolute) displacements are appropriate observables for characterising structural relaxation
of the liquid.
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4.2 Microscopic relaxation

We have identified the existence of decreased velocity variance and extended velocity correlations in dense
and persistent systems. In this Section, we explore the consequences of these for the microscopic relaxation of
persistent systems close to dynamical arrest.

On increasing density, the system becomes crowded, and diffusive motion sets in over a large timescale τα(ϕ)
that increases rapidly with increasing ϕ. This is evidenced by the important change (in log scale) of the time
scale of decorrelation of the dynamical overlap Q (2.43) in Fig. 4.5(a, b). At equilibrium, particle dynamics is
triggered by infrequent thermally activated relaxation events characterised by a broad distribution of energy
barriers, reflecting a rugged energy landscape [52]. This physical picture survives for modest values of the
persistence time, as in Fig. 3.1(a), except that activated dynamics is now driven by a non-equilibrium coloured
noise, as recently studied in simpler active situations [166, 167]. Therefore, glassy dynamics for weak persistence
qualitatively resembles passive systems [79, 82].

The physics is radically different when the persistence time is large. Since particles are always in contact at
these high densities, the natural time scale for relaxation is the two-particle interaction time τ0. This contrasts
with relatively dilute systems, where one should consider the collision time [129]. This opens a time window,
τ0 ≪ t ≪ τp, where particle dynamics is nearly arrested and |vi| ≪ |pi| (see Sec. 4.1). The forces stemming
from particle interactions then nearly balance the self-propulsion forces, and the system is close to mechanical
equilibrium. Such configurations correspond to local minima of an effective potential energy [168, 169]

Ueff({r1, . . . , rN}, {p1, . . . ,pN}) = U({r1, . . . , rN})−
N∑

i=1


pi −

1

N

N∑

j=1

pj


 · ri, (4.1)

which depends on both positions and propulsions. Because Ueff evolves slowly over a timescale τp ≫ τ0, a
mechanical equilibrium at time t may be unstable at time t + τp, because the propulsion forces will have
significantly evolved via (2.16). This activity-induced loss of mechanical equilibrium triggers fast particle re-
arrangements [34] (on a timescale ∼ τ0), as the system relaxes towards a new minimum of Ueff . This effect
is illustrated in Fig. 4.4(c), which shows the squared gradient of Ueff as a function of time. The succession
of spikes correspond to rearrangement events. These results demonstrate that the intermittent dynamics at
large τp constitutes a different relaxation mechanism than the activated relaxation events at weak persistence
[52, 53, 135].

Intermittent dynamics between mechanical equilibria superficially resembles plasticity in slowly sheared
amorphous solids in which smooth elastic deformations are interrupted by sudden plastic rearrangements [58].
In this regime, the spatially correlated velocity field at t = 0 does not dictate the displacements associated with
structural relaxation. To see this, note the weak correlations between Fig. 4.4(a) showing the velocity at time
t = 0 and Fig. 4.4(b) showing the displacement field over time t ∼ τα. These snapshots should be contrasted with
the analogous ones for the persistent liquid (see Figs. 4.2(a, b)), where velocities and displacements are strongly
correlated. (The time scales were chosen such that the MSD is similar in both cases.) In fact, the displacement
field in the glassy case (Fig. 4.4(c)) results from the accumulation of smaller particle rearrangements. We will
explore the analogy with sheared amorphous solids further in Chap. 5.
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4.3 Dynamical heterogeneity

We have established that elementary relaxation events were of a different nature in dense passive systems
and dense persistent systems. At equilibrium, the global relaxation process is heterogeneous, and even more so
as the relaxation time increases [52, 54, 59]. We will explore how the heterogeneity of this process is affected
by non-equilibrium velocity correlations.

While it might be desirable to analyse relaxation events individually, τp is finite in our simulations, so
changes in Ueff (4.1) are not quasistatic. This makes individual rearrangements hard to characterise, a problem
which is familiar from equilibrium supercooled liquids [54]. Hence we analyse the dynamics using tools from
that context. We start with the non-Gaussian parameter [144, 155]

α2(t) =
(1/N)

∑N
i=1

〈
|∆ri(t)|4

〉

2
(
(1/N)

∑N
i=1 ⟨|∆ri(t)|2⟩

)2 − 1, (4.2)

which is zero when the distribution of particle displacements is Gaussian, and greater than 0 for fat-tailed
distribution. In the small-persistence (τp = 10−2) liquid (see Fig. 4.5(c)), we recover the equilibrium behaviour
[144–146]. The distribution of velocities is Gaussian, and so is the small-time displacement distribution. Then
the distribution is maximally non-Gaussian around the relaxation time scale τα. The maximum height of α2

increases with increasing τα (which increases with increasing packing fraction ϕ) which indicates increasing
dynamical heterogeneity. At large times, information about the initial positions is lost, and the distribution
of displacements is again Gaussian. In the persistent moderate-density liquid (see Fig. 4.5(d), ϕ ≲ 0.87) the
dominant source of heterogeneity is the correlated velocities which decay on the time scale τp. Hence α2(t) decays
monotonically from the non-Gaussian value for the velocity distribution at t = 0 to the Gaussian diffusive limit
at t≫ τp. For larger ϕ, α2(t) starts off similar to the active liquid, but it increases again for t > τp, leading to a
maximum at a much longer timescale τα ≫ τp. This peak shows that the slow relaxation dynamics is strongly
non-Gaussian, supporting the picture of intermittent transitions [146] between minima of Ueff .

To quantify the collective nature of the dynamics we study the dynamical susceptibility [54] (2.48)

χ4(t, a) = N
[
⟨Q2(t, a)⟩ − ⟨Q(t, a)⟩2

]
, (4.3)

where Q is the dynamical overlap (2.43). We plot these susceptibilities as functions of both the length scale
a and time scale t in Fig. 4.6, for both a small-persistence (τp = 10−2) and a large-persistence (τp = 102)
dense liquid. We superimpose on this plot a line showing the standard deviation of displacements as a function
of time. As a dynamical susceptibility, χ4(t, a) is related to the typical number of particles involved in some
correlated motion. Here we have chosen this motion to be a displacement greater than length a over time t. In
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dense passive systems, χ4(t, a) is only sizeable (i.e. it reveals significant correlations between displacements) if
t ∼ τα and a is close to the typical cage size [170], thus capturing the cooperative nature of activated relaxation.
This time scale and this length scale can be identified in the plot: these are respectively the average height in
the intermediate subdiffusive regime (i.e. caging regime), and the crossover time to the diffusive regime. This
is confirmed by Fig. 4.6(a). In dense persistent systems, χ4(t, a) is large at all times up to τα, and is maximised
for a given t for a ∼

√
∆r2(t). These data quantitatively confirm that, due to velocity correlations, particle

displacements are spatially correlated over a broad range of time scales in very persistent glassy systems. This
contrasts with results at low persistence, where the short-time correlations are absent, similar to the passive
case.

4.4 Conclusion: large-persistence dense active liquid

We confirmed that at small persistence time τp ≪ τ0, the behaviour of the system is equilibrium-like. On
the opposite limit, for τp ≫ τ0, we observe the emergence of extended velocity correlations, with a correlation
length scale which increases with ϕ and τp, and a correlation time scale which scales with τp and depends weakly
on ϕ. This is consistent with the existing literature [35, 103]. Given the question posed in the introduction to
this Chapter, we now summarise how these non-equilibrium velocity correlations influence relaxation.

At large density, the dynamical arrest of these persistent liquids (τα ≫ τp) is accompanied by complex
spatio-temporal correlations, spanning a range of length and time scales, whose origin differs qualitatively from
active glasses analysed so far. At small times t ≪ τp, the exploration by a given particle of the cage formed
by its neighbours (β-relaxation) is replaced with the coherent motion of particles alongside their neighbours,
following their velocity correlations. At large times t ∼ τα ≫ τp, cage escapes (α-relaxation) are replaced with
intermittent activity-induced rearrangements.

While slow dynamics are ubiquitous in crowded systems (both active and passive), a simple replacement of
thermal noises by highly-persistent propulsions thus dramatically changes the mechanisms by which a liquid
explores its energy landscape. These results provide further evidence that very active glasses are novel states
of matter, with distinct properties from equilibrium glasses [34, 168, 171]. We will explore in Chap. 5 how the
intermittent dynamics of the persistent active glass can be understood by analysing the idealised limit of large
τp [169].

33



34



5 | Activity-driven dynamics

We established that, in large-persistence (τp ≫ τ0) dense systems, neighbouring particles which are pro-
pelled against each other tend to stick [81, 82] (see Sec. 3.2). A first consequence of this is the emergence of
extended velocity correlations [35, 36, 78, 79, 88, 103] (see Sec. 2.4). A second consequence is that, close to
dynamical arrest, intermittent elementary rearrangements do not result from activation events (see Sec. 4.2).
They rather are the consequence of an activity-driven destabilisation of an effective potential [168, 169]. Despite
this difference in nature, we recover heterogeneous relaxation dynamics on time scales τα ≫ τp (see Sec. 4.3).

The study of large-persistence systems close to dynamical arrest is computationally challenging. First,
because τp <∞, it is impossible to study individual rearrangements. Second, because the equations of motion
are integrated on a time scale δt ≲ τ0 while the relaxation time scale is τα ≫ τp ≫ τ0, it is extremely arduous
to directly simulate these steady state of these systems with conventional methods. To tackle both problems,
a recent method was devised, activity-driven dynamics (ADD) [168, 169], which quasistatically simulates the
dynamics of athermal self-propelled particles in the limit of τp → ∞. This enables us to study the microscopic
relaxation in extremely persistent active matter close to dynamical arrest.

In this Chapter, we will first show that ADD relaxation is built on two fundamental processes as in other
athermal quasistatic methods such as athermal quasistatic shear (AQS) [58]. These are smooth elastic de-
formations, where the particles deform weakly near an energy minimum in response to the slowly-varying
self-propulsion forces, and sudden plastic rearrangements or avalanches in which a local minimum of the energy
landscape becomes unstable, forcing the system towards a new one. We characterise these two processes in
detail, including quantitative comparisons with AQS. We then explore how particles move and relax in the
steady states of ADD. As we might expect for a dense disordered system with slow dynamics, we find coop-
erative heterogeneous relaxation. We analyse this motion using a range of techniques borrowed from passive
glassy systems [54], including distributions of particle displacements, correlation functions tailored for structural
relaxation, and four-point susceptibilities.

Some of the results of this Chapter were published in Ref. [172].
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5.1 Effective quasistatic dynamics

In this Section, we describe the principle and implementation of ADD. We will first discuss how taking the
τp → ∞ leads to intermittent dynamics, and how ADD exploits this to approximate the effective dynamics.
Taking this limit reduces by one the number of control parameters, as a matter of simplicity we will also only
consider fixed number density ρ = 1.2. We will discuss this choice in Sec. 5.1.2 which details how this method
is used in practice.
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5.1.1 Intermittent dynamics and activity-driven dynamics

The central ideas are first that, in the presence of fixed propulsion forces and absence of thermal excitations,
the system will converge to a force-balanced configuration in a finite time of order τr ≳ τ0 [168, 169], at the
condition that these propulsion forces are not too strong. (For larger forces, the system yields and there is
no convergence to any mechanical equilibrium [34, 173, 174].) Then, setting a large yet finite persistence time
τp ≫ τr, propulsion forces are constant on time scales τr ≲ t ≪ τp. Therefore, the system is able to reach
a force-balanced state in a time of order τr, and the system configuration remains almost constant until the
propulsion forces change significantly, which requires a time of order τp. Eventually, these forces will change
sufficiently to destabilise the force-balanced state, at which point the system must switch to a new force-balanced
configuration, which involves significant particle motion.

The resulting intermittent dynamical motion has several important consequences. First, it means that
standard simulation methods become inefficient because they require a time step δt ≲ τ0 ≪ τp. ADD circum-
vents this problem by replacing the explicit dynamical integration over times of order τr ≳ τ0 with an energy
minimisation step. This offers a computational speedup of order τp/τ0, which is large in extremely persistent
active matter. Second, the intermittent mechanism of ADD relaxation (which involves long quiescent periods
punctuated by large sudden motions) means that these systems share similarities with other physical systems
where athermal quasistatic motion is relevant. These include amorphous solids under athermal quasistatic
shear (AQS) [58], and active matter systems undergoing an athermal quasistatic random displacement (AQRD)
protocol [38].

In all these contexts, a system evolves in response to potential gradients and the potential evolves quasistat-
ically: the resulting motion is mostly quasistatic, but sudden relaxation events are triggered when the local
minimum of the potential deforms into a saddle point. Such events are known as avalanches, because large-scale
motion can be triggered after an infinitesimal local change [175–177].

In addition to similarities with AQS and AQRD, the ADD method is also related to the athermal quasistatic
random force (AQRF) protocol of Ref. [38]. However, ADD is distinct from all these methods. Specifically,
both AQS and AQRD displace particles along a fixed driving direction and particles move orthogonally to the
drive to minimise their interaction energy. This leads to sustained stick-slip motion, including avalanches. By
contrast, AQRF applies forces with fixed direction. These are changed smoothly, which generates avalanches.
However, increasing the force amplitude eventually drives the system through a yielding threshold [34, 173, 174],
after which mechanical equilibrium is no longer reached and the system “flows”. The essential features of ADD
are that it controls the forces on particles (contrarily to AQS and AQRD), and that the directions of these forces
change randomly with time while their typical strength remains constant (contrarily to AQRF). The result is a
dynamical non-equilibrium steady state that exhibits stick-slip motion. This corresponds to the large-τp limit
of the steady states previously observed in active matter, which also show highly intermittent motion [34] (see
Sec. 4.2).

5.1.2 Implementation

We focus here on extremely persistent systems where τp ≫ τr ≳ τ0. In this limit, it is convenient to introduce
a rescaled time variable as

t′ = t/τp . (5.1)

We also rescale the propulsion by defining p̃i = pi/v0, with v0 the self-propulsion velocity (2.10). It is conve-
nient to work in the centre-of-mass frame so we write p̃ = (1/N)

∑
i p̃i and r = (1/N)

∑
i ri, which are the

propulsive force acting on the particles’ centre of mass and the position of the latter. In the centre-of-mass
frame, (2.15, 2.16) become

1

τp

dr′i
dt′

(t′) = −∇iU(t′) + v0 [p̃i(t
′)− p̃(t′)], (5.2)

dp̃i
dt′

(t′) = −p̃i(t
′) +

√
2η′

i(t
′), (5.3)

where r′i = ri−r is the position relative to the centre of mass, and η′
i is a zero-mean Gaussian white noise in the

rescaled time variables, that is, η′
i =

√
τpηi, which ensures that the components of η′

i satisfy ⟨η′i,α(t′1)η′j,β(t′2)⟩ =
δijδαβδ(t

′
1 − t′2).

To arrive at the ADD limit, we take the limit τp → ∞ at fixed v0. For large τp, (5.2) describes very fast
relaxation to configurations with perfect force balance, which satisfy

∇iUeff = 0, (5.4)
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where
Ueff = U − v0

∑

j

[p̃j(t
′)− p̃(t′)] · rj (5.5)

is the same effective potential as (4.1), and corresponds to the original potential energy of the interacting particle
system, tilted by the active forces. Hence, as τp → ∞, the system is almost always in a local minimum of Ueff ,
as captured mathematically by (5.4).

The dynamics of our model can be simulated directly in the ADD limit [169], we summarise here the method
for achieving this. The steady state distribution of the propulsions p̃i factorises across particles (2.8), with

Prob(p̃i) =
1

2π
exp

(
−1

2
|p̃i|2

)
, (5.6)

and we use this to randomly initialise the p̃i. In each step of the ADD simulation, the propulsion dynamics in
(5.3) is first integrated with time step δt′ using Euler method

p̃i(t
′ + δt′) = (1− δt′)p̃i(t

′) +
√
2 δt′ η̃′

i, (5.7)

where η̃′
i = (η̃′i,x, η̃

′
i,y) are two random numbers drawn from a Gaussian distribution with zero mean and unit

variance. Next one integrates (5.2), which requires that Ueff (5.5) is minimised by steepest descent, holding the
p̃i fixed. To increase computational efficiency, we replace this steepest descent by a faster conjugate gradient
minimisation, using the GPL-licensed ALGLIB C++ library [178]. This is much more efficient than steepest
descent, but it may generally lead to different local minima [179]. We find that the differences between conjugate
gradient and steepest descent algorithms are significant only in steps for which the system moves far from
its initial position. For these individual steps, we then automatically revert to steepest descent, as originally
proposed in Ref. [169]. That is, we choose a threshold in the mean-squared displacement (1/N)

∑
i |δri|2 > 0.1 to

identify minimisation steps with large total displacements. If this occurs during conjugate gradient minimisation
then we restart the minimisation step and use steepest descent for that particular step. We stress that each
of these minimisation step requires on average 102-103 force evaluations. It is thus numerically challenging to
explore both large systems and the large times needed to reach steady state. We will therefore show data for
N ≤ 2000.

We highlight that the continuity of the second derivative of the potential is a necessary condition for the
convergence of our conjugate gradient algorithm. This condition is not satisfied by the WCA potential (2.17).
We will substitute it with a regularised inverse power law 1/r12 pairwise additive potential [180] with

Uij = ε

[
1

(rij/σ̃ij)a
+ c0 + c1(rij/σ̃ij)

2 + c2(rij/σ̃ij)
4

]
Θ(rc − rij/σ̃ij), (5.8a)

σ̃ij =
σi + σj

2
(1− 0.2|σi − σj |), (5.8b)

a = 12, rc = 1.25, c0 = −8 + a(a+ 6)

8rac
, c1 =

a(a+ 4)

4ra+2
c

, c2 = −a(a+ 2)

8ra+4
c

. (5.8c)

As with WCA (2.17), this is a purely repulsive soft interaction potential which diverges at the origin. The
coefficients c0, c1, and c2 make the potential and its first two derivatives continuous at the cut-off distance rc ,
and the pair interaction is slightly non-additive to improve the glass-forming ability of the system.

The ADD construction is valid for self-propulsion velocities v0 below an N -dependent yielding threshold
v∗0(N). The potential Ueff is not bounded below so steepest descent may not converge to a local minimum,
instead the particles could continue to move along their self-propulsion directions. This happens for v0 > v∗0 . The
rheology and phase behaviour of the system above this threshold is explored in Ref. [174]. In order to estimate
the yielding threshold as a function of the system size v∗0(N), we start standard molecular dynamics simulations
from random initial configurations which satisfy ∇iU ≈ 0, and set constant propulsions with distribution (2.8)
and variance 2v20 . For each system size N and self-propulsion velocity v0, we perform 100 simulations up to time
tf = 500τ0 (note that Ref. [169] considered times t ≤ 250τ0 for their steepest-descent minimisation). We finally

check how many of these simulations have a velocity standard deviation
√〈

(1/N)
∑N
i=1 |vi(tf)|2

〉
> 10−6. The

latter are considered as simulations which are still flowing [173]. We obtain the following rough estimates at
ρ = 1.2 by determining for each N at which v0 half of the simulations are still flowing: v∗0(N = 500) ≈ 1.7,
v∗0(N = 1024) ≈ 1.4, v∗0(N = 2000) ≈ 1.2, v∗0(N = 4096) ≈ 1.1. Given these systematic finite-size effects, it
would be desirable to simulate even larger systems. However, we emphasize that a single time step for ADD is
much more expensive than a single time step in a standard molecular dynamics simulation, because it requires
many evaluations of the interparticle forces to converge the energy minimisation. This stems from the intrinsic

37



δϵp ≥ 0 δϵp < 0

Ueff(0)

Ueff(δt
′)

0 1 2 3
t′

−40

−30

−20

−10

0

10

∑
t′′
≤
t′
δε
p
(t
′′ ) 2

3
τ ′

1

v0 = 0.9v0 = 0.9

(a) (b)

Figure 5.1: (a) Sketch of the effective potential energy landscape Ueff in (5.5) at times 0 (thick blue line)
and δt′ (thin red line). The system initially rests in a minimum of Ueff(0) (filled blue circle). After δt′, the
system rests in a minimum of the new landscape Ueff(δt

′), and it is displayed in the initial landscape (open red
circle). We distinguish elastic events (δϵp ≥ 0) for which the systems remains close to its original position, and
thus the potential energy in Ueff(0) increases, and plastic events (δϵp < 0) for which a rearrangement occurs.
(b) Accumulated variations of the effective potential energy,

∑
t′′≤t′ δϵp(t

′′). We identify elastic branches made
of successive elastic events (e.g. event 1 ) as ascending lines, and plastic events (e.g. events 2 and 3 ) as
instantaneous large drops. Parameter values: N = 1024, v0 = 0.9, δt′ = 10−2, purple square symbols separated
by δt′.

difficulty of simulating systems with well-separated time scales (τp/τ0 → ∞). This limit is inaccessible using
standard methods: it can be simulated using ADD, but there is still a significant cost.

In the ADD dynamics for v0 < v∗0 , each step starts with the system in a local minimum of Ueff with
positions and propulsions ({r01, . . . , r0N}, {p0

1, . . . ,p
0
N}), and evolves to a new minimum with positions and

propulsions ({r1, . . . , rN}, {p1, . . . ,pN}). This can happen in two ways, as sketched in Fig. 5.1(a). In the
simplest case, a small change in propulsion forces changes the local minimum of Ueff perturbatively, leading
to small displacements. This will be called an elastic step. However, the change in propulsive forces can also
destabilise the local minimum at ({r01, . . . , r0N}, {p0

1, . . . ,p
0
N}), leading to a non-perturbative change in the

configuration. This is called a plastic step.
To distinguish these two cases, we compute the change in effective potential in one step:

δϵp = U({r1, . . . , rN})− U({r01, . . . , r0N})− v0
∑

i

(p̃0
i − p̃0) · (ri − r0i ). (5.9)

This sign convention is opposite to that of Ref. [169]. We will denote δri = ri−r0i the single-step displacement
of particle i. Note that the propulsions in this equation are those of the state before the ADD step, with the
consequence that perturbative changes in the positions lead to positive δϵp as the system moves away from the
minimum of the associated Ueff . Hence, we identify elastic steps as those with δϵp ≥ 0 while those with δϵp < 0
are plastic, as illustrated in Fig. 5.1(a). We define τ ′ as the time between two consecutive plastic events. We
discuss these two types of step separately in detail in Sec. 5.2.

As well as the system parameters, a numerical simulation of ADD also requires a choice of time step δt′.
As usual, this should be small enough to mimic the limit δt′ → 0, but large enough to ensure computational
efficiency. In practice, we perform ADD simulations (using steepest descent as the minimisation algorithm) for
different time steps δt′. We then compute the average squared displacement d2rms, separately for elastic and
plastic steps. For elastic steps, we expect the trivial scaling d2rms ∼ δt′ [169]. For plastic steps, we observe on
the contrary that d2rms plateaus at small time steps δt′ and is an increasing function of δt′ at large δt′. We
choose the optimal δt′ as the time step when d2rms starts to deviate from its low-time-step limit.

As for performances, we compare minimisation procedures with respect to their number of force evaluations,
which we expect to be the most time-consuming part of the algorithm. We report that (for v0 = 0.9, N = 1024,
δt′ = 10−2) on average 93% of steps are elastic and 7% are plastic. Compared to standard steepest descent
(SD), our conjugate gradient (CG) algorithm [178] is on average 93-fold faster on elastic steps and 22-fold faster
on plastic steps. We compute the following total acceleration from SD to CG

pSDplasticN
SD

plastic + pSDelasticN
SD

elastic

pCG
plasticN

CG

plastic + pCG
elasticN

CG

elastic

≈ 64-fold (5.10)

where pαβ denotes the proportion of β (= plastic or elastic) steps using algorithm α (= SD or CG), and N
α

β

denotes the average number of force evaluations in β steps using algorithm α.
We have taken the limit τp → ∞ and will only consider fixed number density ρ = 1.2. We are thus left with

two control parameters: the number of particles N and the self-propulsion velocity v0. For fixed v0, we expect
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the behaviour to be robust with respect to ρ, as long as ρ is not too large (complete jamming) or too small (no
force balanced states, i.e. flow).

5.2 Analysis of individual events

A typical trajectory from ADD is shown in Fig. 5.1(b). It consists of sequences of elastic steps (δϵp is
positive and O(δt′)), interspersed with instantaneous plastic events (δϵp is negative and O(1)). Such behaviour
is familiar from AQS simulations of sheared glasses [58] as well as from AQRD simulations [38] and the non-
equilibrium dynamics of the random-field Ising model (RFIM, where the plastic events would be identified as
avalanches) [177].

This Section analyses the properties of the elastic and plastic steps, including a quantitative comparison
with AQS. We take v0 = 0.9 throughout this section. This is a practical choice: on the one hand it is far enough
from the threshold v∗0 to keep the system from moving too much between minimisations, on the other hand
smaller values of v0 lead to slower dynamics and the numerics become more challenging.

5.2.1 Elastic steps
A representative snapshot of the displacement field obtained during an elementary elastic step of the ADD

dynamics is shown in Fig. 5.2(a). We observe highly heterogeneous displacements, with wide variations in
amplitude and clear large-scale correlations resembling both non-affine displacement in sheared athermal glasses
[149] and collective swirling motion in active matter [35] (see Sec. 4.1).

Elastic steps can be analysed under the assumption that the updated propulsive forces move the minimum
of Ueff perturbatively, in a way similar to AQS [58, 149]. We will use this approximation to derive analytic
predictions for the elastic displacements and their spatial correlations.

The states before and after the elastic step are both force balanced, so for all i

δ
[
−∇iU + v0(p̃i − p̃)

]
= 0, (5.11)

where δ indicates the change in a time increment δt′. In the limit of δt′ → 0, we can use a harmonic approxi-
mation so the equation above can be written as

δ

[
− ∂

∂riγ
U + v0(p̃iγ − p̃γ)

]
= −

∑

j,δ

Hiγ,jδδrjδ + Ξiγ = 0, (5.12)

where Greek indices are used for spatial dimensions and Latin indices for particles, and where we have introduced
H the Hessian matrix (2.56) of U whose coefficients are

Hiγ,jδ =
∂2

∂riγ∂rjδ
U, (5.13)

and introduced Ξi
Ξiγ = v0(δp̃iγ − δp̃γ)

= v0 (−p̃iγδt′ +
√
2 δt′η′iγ − δp̃γ),

(5.14)
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Figure 5.2: (a) Snapshot of displacements for a single elastic step ( 1 in Fig. 5.1). Colours indicate the
norm and arrows their direction. (b) Corresponding displacement correlation function Cδrδr(r), defined on
the model of velocity correlations (2.57) where the single-step displacement δri replaces the velocity vi, for
various N values. Solid (resp. dotted) line: evaluation of (5.22) (resp. (5.23)) with sums across the range
0 < m2 + n2 < 402 and a suitably chosen overall prefactor. Parameter values: v0 = 0.9, N = 1024, δt′ = 10−2.
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which is the analogue of the affine force in the AQS setting of Ref. [58], where the term δp̃ only ensures
∑
iΞi = 0

so that we stay in the centre-of-mass frame.
We solve (5.12) for the displacements δriγ . We first invert this relation to write

δriγ =
∑

j,δ

(H−1)iγ,jδΞjδ. (5.15)

The Hessian matrix H is symmetric and real-valued thus, by virtue of the spectral theorem, there exists an
orthonormal basis of eigenvectors ea, associated with eigenvalues Λa, that diagonalises it:

Hiγ,jδ =
∑

a

Λaea,iγea,jδ. (5.16)

Introducing the projection of the affine force along eigenvector ea,

Ξa =
∑

j,δ

Ξjδea,jδ (5.17)

and employing the diagonalised form of the Hessian, (5.15) then becomes

δriγ =
∑

a

ΞaΛ
−1
a ea,iγ . (5.18)

Here we have implicitly omitted eigenvectors with zero eigenvalues Λa = 0: these correspond to translations,
which are explicitly excluded from δriγ as we work in the centre-of-mass frame.

To evaluate (5.18) approximately, we follow Ref. [58] in assuming the eigenvectors of H are the longitudinal
(||) and transverse (⊥) plane wave eigenstates of the Navier operator [149, 153] for the displacement field in an
elastic medium, with the associated eigenvalues proportional to the square of the wavevector,

a ≡ (m,n, α), Ξa ≡ Ξαmn, (5.19a)

ea,iγ ≈ exp(ikmn · ri) k̂αmnγ/N, Λa ≈ λα(m2 + n2)/N (5.19b)

where α = ||,⊥ is the polarisation direction, kmn = (2πm/L, 2πn/L) is the wavevector, k̂
||
mn = kmn/|kmn|, and

k̂
⊥
mn = ẑ ∧ k̂

||
mn. The displacement field (5.18) can then be written as

δriγ =
∑

m,n,α

Ξαmn
eikmn·ri k̂αmnγ
λα(m2 + n2)

(5.20)

where the third sum is over the two polarisation α = ||,⊥.
It is then possible to compute the spatial correlation function

gADD(r) ∝⟨δri · δrj δ(r − (rj − ri))⟩

=
∑

m,n,α

〈
|Ξαmn|2

〉

(λα(m2 + n2))2
eikmn·r,

(5.21)

where we have checked numerically that the projections of the affine force Ξi on the eigenmodes of the Hessian
H behave as uncorrelated random numbers, with a variance

〈
|Ξαmn|2

〉
independent of the specific mode. We

finally take the orientational average of (5.21) to write

gADD(r) ∝
∑

m,n

J0
(
2π

√
m2 + n2 r/L

)

(m2 + n2)2
, (5.22)

where J0 is the zeroth-order Bessel function of the first kind. Our result is quantitatively different from the
corresponding correlation function for sheared amorphous solids [149]

gAQS(r) ∝
∑

m,n

J0
(
2π

√
m2 + n2 r/L

)

m2 + n2
. (5.23)

The difference between (5.22, 5.23) arises because affine forces Ξi in AQS are derived from pair potentials: the
force exerted by particle i on particle j is equal and opposite to the one exerted by particle j on particle i.
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Hence, the affine forces on different particles are necessarily correlated in AQS. Still, both functions correspond
to scale-free correlations, with the only relevant length scale being the system size L itself. Qualitatively, this
behaviour is visible already from the system-spanning vortices in the displacement field shown in Fig. 5.2(a).

We compute the displacement correlation numerically in Fig. 5.2(b). The collapse with r/L for three different
system sizes shows that correlations scale with the system size for the range of sizes we have investigated, and
are close to the analytical prediction (5.22). These correlations are negative at large r/L. The small difference
between the prediction and the measurement may be attributed to the plane wave hypothesis, which can in
principle be tested [181]. We have also checked that the above correlation functions are consistent with the
correlations computed from purely harmonic steps, i.e. with displacements determined by solving (5.12) exactly.
This establishes another parallel to Ref. [149].

The scaling with system size of the displacement correlations that we find is consistent with the arguments
obtained for finite persistence time in Ref. [35]. In that case, the dynamics along elastic trajectory segments
produces displacement (or equivalently velocity) correlations on a length scale that diverges as ∼ √

τp for
large persistence times. As our analysis takes τp → ∞ from the start, this limit translates into displacement
correlations on the largest length scale available, i.e. the system size.

5.2.2 Plastic steps

Particle displacements for two representative plastic steps are shown in Figs. 5.3(a,b). The qualitative
picture has again many similarities with AQS: the displacements in any single plastic event can be interpreted
as sequences of localised yielding events [58, 169]. That is, a plastic step happens when a local minimum of
Ueff develops an unstable direction, causing local motion. However the elastic perturbation due to this event
perturbs the system over large length scales and can create further unstable directions in other parts of the
system. This leads to a cascade or avalanche of localised yielding events. We describe these plastic events here
and discuss similarities and differences with AQS.

We find that plastic avalanches display a broad range of sizes and can involve a few localised particles, as in
Fig. 5.3(a), or a greater number of particles distributed across the system as in Fig. 5.3(b), or even the whole
system. To characterise the participation in each plastic event, we identify the number S of particles with
significant changes in their local environments. In Ref. [169] this identification was carried out by thresholding
particle displacements, but such a criterion neglects the fact that particles may collectively move large distances
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Figure 5.3: (a, b) Snapshots showing the movement of particles in the two plastic events marked 2 and
3 in Fig. 5.1, with participation S = 19 and S = 102, respectively. Displacements are magnified 5 times
and superimposed onto a colormap of the residual force |f res,i| that highlights rearranging particles. (c) Log-
distribution of the participation S in plastic events, for three system sizes N and time steps δt′(N = 500) =
2 × 10−3, δt′(N = 1024) = 10−3, δt′(N = 2000) = 5 × 10−4. The solid black line corresponds to a scaling
P (S) ∼ P (log10 S)/S ∼ S0.3−1 = S−0.7. Inset shows the evolution of the mean ⟨S⟩ with N . (d) Log-
distribution of times τ ′ between consecutive plastic events. Inset shows the evolution of the mean ⟨τ ′⟩ with N .
Scaling exponents are subject to significant uncertainties and the numbers provided are indicative. Parameter
values: N = 1024, v0 = 0.9, δt′ = 10−2.
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without changing their local environment. Here, we use instead the residual force f res,i [182, 183] (see App. A
for definition) as an indicator of rearrangements. This force is zero if and only if displacements result from
a harmonic response of the system to the change in propulsion forces. If a localised avalanche takes place,
particles that are far from the avalanche tend to respond elastically, leading to very low residual forces, whereas
rearranging particles in the core of the avalanche have large residual forces. This is illustrated in Fig. 5.3(a,b).
We then define the avalanche size S as the number of particles for which |f res,i(δt

′)| > 20, determined after
careful analysis of the distributions of f res,i (see App. A).

Fig. 5.3(c) shows the resulting broad distribution of log10 S for three system sizes. The small events can
be attributed to local yielding, in which the remainder of the system reacts elastically with particles moving
collectively to accommodate the local rearrangement [169, 183]. At low values of S, the distributions overlap
for different system sizes, with a behaviour compatible with P (S) ∼ S−τ with τ ≈ 0.7. (We use the notation
τ here, which is standard in the literature [184], τ does not indicate a time scale.) Given the small range of
system sizes studied here, it is difficult to provide a very precise estimate of τ , but it is clearly distinct from the
values found in AQS simulations of sheared glasses where values in the range τ ≈ 1.2− 1.5 have been reported
[176, 184].

Turning to the behaviour at large S we observe that larger avalanches with S ∼ N are more frequent for
larger systems, suggesting that these are also important in ADD. Correspondingly, the inset in Fig. 5.3(c)
shows that the average event size ⟨S⟩ scales as Nγ with γ ≈ 0.7, showing that the mean avalanche size is indeed
controlled by large avalanches that are limited by the system size only. In other words, the avalanches observed
during plastic events also lead to scale-free dynamic relaxation events.

Fig. 5.3(d) shows the distribution of waiting times τ ′ between consecutive events. The average time decreases
with system size as ⟨τ ′⟩ ∼ N−1.5. If localised yielding events happened independently in different parts of a
large system, one would have a more trivial dependence on the system size, ⟨τ ′⟩ ∼ N−1: together with the
N -dependence of ⟨S⟩, this is another indication of long-ranged correlations, on the scale of the system size.

Such scaling behaviour hints at critical phenomena. The force threshold v∗0(N) for yielding decreases with
N in our simulations, which is presumably also due to long-range correlations [34, 173]. Since we increase N at
fixed v0 while staying always below v∗0(N), some of the dependence on N may arise because the larger systems
are closer to yielding. Indeed, larger systems support larger events, which tend to relax the system more quickly
(compare Fig. 5.7(b) below).

While the ADD plastic events share similarities with those of AQS, there are also some important differences
to emphasise. In particular, in ADD there is no preferred direction and the system is isotropic (apart from a
possible influence of the periodic boundary conditions, which we expect to be very weak). In AQS, on the other
hand, rotational symmetry is broken because the system is always sheared in the same direction. As a result,
localised plastic events eventually organise into a line of slip, which leads to a subextensive scaling of event
sizes ⟨S⟩ ∼ L ∼

√
N in the steady state [58, 185]. These correlations also cause a reduction in the frequency of

plastic events: the typical time (accumulated strain) between consecutive events scales as ⟨τ ′⟩ ∼ 1/L ∼ 1/
√
N

(we recall it would be ∼ 1/N for independent events [58]).
In short, ADD in its elastic steps produces displacements that are correlated on the scale of the system size

L, in agreement with predictions for finite τp [35]. However, the master curve for displacement correlations
against r/L is different from the AQS case [149] because the local “affine” forces Ξi lack the correlations that
are present for AQS [186]. For plastic events, the isotropy of ADD also leads to larger event sizes S and shorter
inter-event times. The next question to be addressed is how the individual particles move in the active fluid,
when observed over multiple time steps.

5.3 Microscopic dynamics

Since ADD is a computational tool to explore particle motion in dense active fluids, it is natural to study
dynamical relaxation in ADD trajectories. To this end, we use observables developed for the analysis of re-
laxation in dense glassy systems [54]. Such measurements have also been used to describe particle motion in
sheared and active glasses, which all display heterogeneous and cooperative dynamics.

5.3.1 Mean squared displacement
Fig. 5.4(a) shows the MSD (2.36) for different values of the self-propulsion velocity v0. In the steady state,

the MSD is nearly diffusive at all times. The self-diffusion constant at large times roughly decreases by an order
of magnitude between v0 = 0.9 and v0 = 0.8. However, there is no feature in the average displacements that
would allow identification of a characteristic relaxation time scale or length scale. This is in contrast to the
classic two-step relaxation scenario found in many glassy systems [52, 132], but resembles the diffusive behaviour
found in AQS simulations of sheared systems [187].
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Figure 5.4: (a) Mean squared displacement (2.36) for different values of the self-propulsion
velocity v0. (b) Distribution of displacements (2.46) scaled by the MSD G̃s(r, t

′) =

(1/N)
∑N
i=1 ⟨δ(r −∆ri,x(t

′)/MSD(t′)) + δ(r −∆ri,y(t
′)/MSD(t′))⟩ at different t′. Dashed line corresponds to

a normal distribution. Parameter values: N = 1024, v0 = 0.9, δt′ = 10−2.

Although the MSD displays seemingly trivial behaviour, the displacement distributions have significant
structure. Fig. 5.4(b) shows the corresponding distribution Gs(r) of the x and y-components of the particle
displacements, scaled by the root mean-squared displacement, at v0 = 0.9. These distributions differ strongly
from Gaussian behaviour, which is only recovered in the large time limit, t′ → ∞. At small times t′ ≪ 1 (with
of course t′ ≥ δt′), the displacement distribution has a narrow central peak with heavy tails. The width of
these tails decreases with increasing time, and the distribution approaches a Gaussian form. For supercooled
liquids, we would expect the small time distribution to be nearly Gaussian due to short-time thermal dynamics,
with fat tails developing only as the system starts to relax. The tails appear when a significant number of
particle rearrangements has taken place [146, 155]. The difference between ADD and thermal dynamics at short
times is easily explained by the athermal quasistatic nature of ADD dynamics. Moreover, the participation in
plastic events has a broad distribution [Fig. 5.3(c)]. As a result, the fat tails arising from structural relaxation
are visible already after a single time step δt′ and arise from avalanches. In AQS simulations, similar heavy-
tailed distributions also appear at early times due to plastic avalanches [187]. In both ADD and AQS we
expect that nearly-exponential tails appear at intermediate times, as a generic result of the stochastic nature of
avalanches [146].

To gain more insight into the dynamics, we decompose the displacements into separate contributions from
elastic and plastic events. We define the elastic (resp. plastic) displacement of a particle between 0 and t′ as
the sum of its displacements over all elastic (resp. plastic) steps between these two times. We plot in Fig. 5.5(a)
the MSDs from these contributions at v0 = 0.9. Both of them show a crossover between two diffusive scaling
regimes, i.e. both have MSD(t′) ∼ t′ at short and at long times but with different prefactors. Despite the
complex time dependences of the separate contributions, their sum in the total MSD appears nearly linear
(recall Fig. 5.4).

To connect the elastic and plastic displacements to the distribution Gs(r) in Fig. 5.4(b), we fit the central
peak of Gs(r) to a Gaussian distribution with standard deviation std(t′) such that the associated mean-squared
displacement is MSD(t′) = 2 std2(t′). Fig. 5.5(a) compares this effective MSD to the elastic and plastic con-
tributions. At small times, the central peak of Gs is compatible with the variance of elastic displacements,
while at large times it is compatible with plastic displacements. Our interpretation is that for small times,
displacements in elastic branches populate the narrow central part of the displacement distribution, while the
displacements of rearranging particles populate the tails. At large times, plastic displacements dominate elastic
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Figure 5.5: (a) Elastic and plastic contributions to the MSD, together with the MSD predicted from a Gaussian
fit of the central part of Gs. (b) Wave-vector-dependent relaxation time τ ′s(k) (2.41) extracted from elastic and
plastic displacements (colours and symbols as in (a)). Parameter values: N = 1024, δt′ = 10−2, (a) v0 = 0.9.
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displacements, and the whole displacement distribution is close to Gaussian, therefore its variance is dictated
by plastic displacements.

5.3.2 Single-particle correlation functions

The MSD and the distribution Gs yield useful information about the dynamics. However, MSD measure-
ments can sometimes be dominated by a subset of fast moving particles. To investigate this, we computed the
self-intermediate scattering function Fs(k, t

′) (2.40) and analyse the k-dependent relaxation time scale τ ′s(k)
(2.41).

We plot τ ′s(k) for both elastic and plastic displacements in Fig. 5.5(b). Fickian diffusion would correspond
to the scaling τ ′s(k) ∼ k−2 [138]. Elastic displacements show two distinct diffusive scalings, at small and at
large length scales (resp. small and large time scales). At small times, elastic displacements are computed over
a single elastic trajectory segment, thus the corresponding diffusive behaviour derives from the balance between
the Ornstein-Uhlenbeck driving on the one hand and the restoring forces on the other hand [150, 188]. At
large times, elastic displacements are computed over many elastic trajectory segments separated by multiple
plastic events. We expect the displacements over these different elastic trajectory segments to be independent,
therefore the sum of all these displacements produces a diffusive behaviour distinct from that of single branch
displacements. It is noteworthy that, in the hypothetical absence of plastic events, we do not expect the initial
diffusive behaviour to extend to time scales larger than the Ornstein-Uhlenbeck driving correlation time τp.

The small and large length scale behaviour are also different for plastic displacements. These displacements
are indeed diffusive at large length scales but they show a relaxation time scale τ ′s(k) that plateaus at small
length scales. This plateau corresponds to the typical time for a plastic event to occur, and can be computed
from the statistics of the inter-event times τ ′ as the residual time τ ′res = ⟨τ ′2⟩/(2⟨τ ′⟩) [189]. Therefore, at times
t′ ≲ τ ′res the plastic MSD is likely dominated by a small subset of particles.

It is noteworthy that this result is robust to changes in v0 (see Fig. 5.5(b)). The residual time τ ′res changes
by a factor of ∼ 2.5 between v0 = 0.9 and v0 = 0.8, distinct from the factor of 10 observed for the self-diffusion
constant. Moreover, since the diffusion constant drops more rapidly than the residual time increases, the typical
length scale above which the plastic movement appears Fickian [138] decreases with decreasing v0 – which is
opposite to what we would expect for a supercooled liquid approaching the glass transition.

The displacement fields in the plastic events of Figs. 5.3(a, b) show that particles that are not involved in
rearrangements can move away from their initial position without relaxing their local structure. But neither
the MSD nor Fs(k, t′) can detect whether single particle translations actually correspond to changes in the
local structure or not. To focus on this aspect of structural relaxation, we use the bond breaking correlation
function Cb(t

′) (2.45) where the parameter A1 = 1.25 is the cutoff defining initial neighbours, and A2 = 1.5
quantifies the distance they are required to separate before the correlation function decays This function obeys
Cb(t

′ = 0) = 1, by definition, and it quantifies at time t′ the average fraction of neighbours lost since t′ = 0.
This way, it efficiently disentangles rearrangements from displacements that do not relax the local structure.

Fig. 5.6 shows Cb(t
′) for several values of v0. The relaxation time scale τ ′b of Cb roughly increases by an order

of magnitude between v0 = 0.9 and v0 = 0.8, mirroring the decrease of the self-diffusion constant. Moreover,
τ ′b ≫ 1, so structural relaxation happens long after self-propulsion forces have fully decorrelated from their initial
values which occurs for t′ ∼ 1. The correlation function is stretched, which suggests that structural relaxation is
temporally heterogeneous [132]. In addition, it is remarkable that the MSD at the time τ ′b where local structure
becomes fully decorrelated is greater than unity. This is again very different from thermal glasses where the
escape from the cage also coincides with structural relaxation. Here instead particles travel comparatively larger
distance without necessarily relaxing the structure, which can be seen as a consequence of the swirling motion
observed in snapshots such as Fig. 5.2(a) (for elastic events) or Fig. 5.3(a,b) (for plastic ones).
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Figure 5.6: Bond breaking correlation function Cb(t
′) (2.45) for different values of the self-propulsion velocity

v0. Parameter values: N = 1024, δt′ = 10−2.

44



10−2 100 102 104
t′

10−4

102

M
S

D
(t
′ )

∼ t′

N = 500
N = 1024
N = 2000

∼ t′

N = 500
N = 1024
N = 2000

10−2 100 102 104
t′

0

1

C
b
(t
′ )

∼ e−(t′/t′0)
0.75∼ e−(t′/t′0)
0.75

(a) (b)

Figure 5.7: (a) Mean-squared displacement (2.36) and (b) bond-breaking correlation function Cb(t′) (2.45) for
different N . Parameter values: v0 = 0.9, δt′(N = 500) = 2× 10−3, δt′(N = 1024) = 1× 10−3, δt′(N = 2000) =
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We finally show the dependence of the dynamics on system size N . Fig. 5.7 shows the MSD and the bond
breaking correlation function for a fixed v0 = 0.9 but different values of N . For all values of N studied, the MSD
is diffusive at large times and the relaxation of Cb(t

′) is stretched. Strikingly, however, both functions strongly
depend on the system size with no sign of a saturation at some large N value. As N increases, the particles
move faster, resulting in an MSD that is larger and a time correlation function that decreases faster. Since
we have simulated three system sizes, it is not easy to determine a precise scaling of the self-diffusion constant
and the relaxation time τ ′b with N . There are two sources for the system size dependence of the dynamics as
discussed above: the frequency and size of the plastic events both increase with N , recall Fig. 5.3. Thus, in
the ADD regime, the dynamics is always sensitive to the system size, as a result of the large persistence time
limit. This is again in good analogy with the AQS dynamics where the self-diffusion constant also changes with
system size [190].

5.3.3 Dynamical heterogeneity
In glassy fluids, one generally expects complex heterogeneous dynamics, where spatial fluctuations around

the average dynamical behaviour are important for understanding the relaxation dynamics [54] (see Sec. 4.3).
The system considered here also has this feature. It is illustrated in the snapshots of Figs. 5.8(a-d) which show
maps of a single-particle analogue of the bond-breaking correlation function (2.45). This is defined as

Cb,i(t
′) =

∑
j Θ(A1 − r̂ij(0))Θ(A2 − r̂ij(t

′))∑
j Θ(A1 − r̂ij(0))

, (5.24)

and represents the fraction of bonds of particle i that have been broken up to time t′. Just like its global
analogue, this function decays from unity to zero as the environment of particle i decorrelates from its initial
state.

The definition of a local relaxation function in (5.24) allows us to visualise in real space how the initial
structure of the system relaxes as dynamics proceeds. The main observation in the snapshots of Fig. 5.8 is that
the spatial distribution of relaxed particles, at any given time, reveals strong spatial correlations in the local
dynamics.

While similar observations of spatially correlated dynamics are quite generic in dense amorphous materials,
the time series shown in Fig. 5.8(a-d) reveals additional features beyond the mere existence of correlations. We
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Figure 5.8: (a-d) Snapshots of the system highlighting the local bond breaking correlation Cb,i (5.24) between
time t′ = 0 and a lag time of (a) t′ = 3.86 (124 plastic events, Cb = 0.89), (b) t′ = 5.02 (196 plastic events,
Cb = 0.65), (c) t′ = 6.53 (252 plastic events, Cb = 0.52), (d) t′ = 8.49 (355 plastic events, Cb = 0.41).
Parameter values: N = 2000, v0 = 0.9, δt′ = 5× 10−4.
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observe that at short times (Fig. 5.8(a)), only a few particles have relaxed, and the spatial structure of the Cb,i
reveals the very few underlying plastic events that have taken place in this particular trajectory. At larger times
(Figs. 5.8(b, c)), one sees that additional structural relaxation events tend to happen in the close vicinity of
previous ones. These observations have also been made in slowly relaxing supercooled liquids at equilibrium and
this effect is known as dynamical facilitation [143, 191]. At the microscopic level, these effects must correspond
to spatio-temporal correlations between successive plastic events. Close to the relaxation time τα (Fig. 5.8(a-
d)), we can clearly identify fast regions where particles have been involved in numerous rearrangements and
have relaxed their local initial structure. We also see slow regions where particles’ local environments remain
the same. Finally, at long times all particles have Cb,i ≈ 0 and one recovers a homogeneous picture. It is
noteworthy that despite the absence of shear to organise plastic activity into anisotropic structures (namely,
shear bands [58]), correlations spontaneously emerge between the plastic centres.

The extent of these dynamical spatial correlations can be quantified via the dynamical susceptibility (2.48)

χb(t
′) = N [

〈
Cb(t

′)2
〉
− ⟨Cb(t′)⟩2] . (5.25)

where Cb is the bond-breaking correlation function (2.45). This function is plotted for different values of the
self-propulsion velocity v0 in Fig. 5.9(a), and for different numbers of particles N in Fig. 5.9(b). As usual, χb

shows a peak at the time close (but not exactly equal) to τ ′b where Cb starts to decrease [142], indicating that
the dynamics is most heterogeneous around these times. The slowdown of the dynamics with decreasing v0 or
N (Figs. 5.6, 5.7) is reflected in the corresponding increase of this peak time. Moreover, the height of the peak
tells us about the typical number of particles involved in correlated clusters in Fig. 5.8 [54]. At fixed N , the
dynamical slowdown is accompanied by an increased cooperativity of the relaxation, as is observed for liquids
approaching the glass transition [170]. This situation is different when the self-propulsion velocity v0 is kept
fixed: the dynamics speeds up with increasing N but it also becomes more cooperative with a larger dynamical
susceptibility. Recall that ADD is defined by taking the limit τp → ∞ at fixed N : as a consequence, the length
scale that characterises velocity fluctuations is slaved to the system size, and diverges for large N . The global
correlation function Cb and its fluctuations χb both change systematically with N , revealing that the long-time
relaxation dynamics is also sensitive to the system size, presumably because of a cooperativity length scale that
diverges with N .

These observations provide further evidence that spatially heterogeneous dynamics is very generic in dense
and disordered fluids. A major difference with equilibrium supercooled liquids is the system size dependence
observed for the dynamical heterogeneity, indicating a diverging correlation length. This is attributed to the
quasi-static nature of the dynamics, as also found in AQS simulations [187]. In addition, the slow growth of
dynamical correlations with time (see Fig. 5.9) reveals the role of dynamic facilitation. Whereas facilitation has
been described before in equilibrium dynamics [143, 191, 192], much less is understood about its consequences
for sheared and active systems. Our findings suggest that facilitation could also be a very generic feature
characterising the relaxation dynamics of dense and disordered fluids, and this clearly deserves further study in
the context of driven amorphous materials.

5.4 Conclusion: relaxation in extremely persistent active matter

The efficient implementation of activity-driven dynamics (ADD) [168, 169] enables us to study the relaxation
of dense systems of self-propelled particles in which the persistence time τp is large compared to the microscopic
time τr ≳ τ0 that the system needs to reach an arrested state for a given set of self-propulsion forces. On time

46



scales t = t′τp of the order of the persistence time, the dynamics then becomes intermittent (see Fig. 5.1). In the
absence of rearrangements, the system reacts elastically to changes in the self-propulsion forces. The resulting
movements are correlated on the length scale of the system (see Fig. 5.2). Consecutive elastic events may be
interrupted by plastic events that trigger instantaneous rearrangements. The participation in these events has
a broad distribution. Outside of the plastic core forming these avalanches, the remainder of the system moves
collectively to accommodate the rearranging regions (see Fig. 5.3).

Relaxation of the whole structure happens through the accumulation of many of these plastic events. This
relaxation dynamics is nearly diffusive at all times (Fig. 5.4) and spatially heterogeneous (Fig. 5.8), implying
that plastic events are not independent and tend to concentrate where they have already happened, in a fashion
reminiscent of dynamic facilitation.

We expect our results to be transferable from two dimensions to three dimensions, as are the salient features
of the physics of glasses [141] and cooperative motion in dense active matter [124].

The limit of large persistence τp → ∞ is taken at fixed number of particles N and there is thus a dynamical
length scale that scales with the system size. As a consequence, the average dynamics of the system and its
fluctuations all depend on the system size (see Figs. 5.7, 5.9).

At fixed v0 we would also expect quantitative changes as ρ is increased: avalanches should become rarer
but the evolution of their distribution remains uncertain. Also interesting to study in the future will be the
connection between plasticity in ADD and approaches to yielding in passive materials that argue in favour
of a mechanism based on fluctuating energy barriers [193] rather than effective thermal activation over fixed
barriers [194–199].

We established that the relaxation dynamics in ADD is nearly diffusive at all times. However, this overall
diffusive behaviour is the sum of two different kinds of displacements: plastic motion, which is diffusive on time
scales larger than the residual time τres (i.e. the typical time between two plastic event), and elastic motion
which is diffusive on time scales smaller than τp and time scales larger than τres with two different diffusion
coefficients. We found that τres increases with decreasing self-propulsion velocity v0, but to the best of our
computational abilities we only accessed the regime τres ≲ τp (see Fig. 5.5(b)). At fixed N , we may expect that
the typical time between plastic events τres ≫ τp in the limit v0 → 0. This separation of time scales would imply
that on times τp ≪ t ≪ τres the memory of the initial propulsion forces is lost but no significant relaxation
event (i.e. plastic event) took place. We thus expect that particles will remain close to their initial position for
some time before diffusing away on time scales t ≳ τres. We would then recover a two-step relaxation scenario,
with β-relaxation corresponding to the diffusive elastic exploration of a potential energy minimum. We recall
that, due to the limit τp → ∞ taken at finite N , elastic displacements are correlated on the length scale of
the system. Therefore, the distance travelled by particles before losing memory of their orientations may itself
depend on the system size. However, since these are large wave-length fluctuations (as are Mermin-Wagner
fluctuations [141]), it is possible that for large N these large fluctuations lead to relaxation events [139], which
comes in contradiction with the hypothesis τres ≫ τp. Further explorations are needed to validate this scenario
and the nature of the very slow dynamics emerging in this limit.
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6 | Large-persistence mesoscopic flow

We introduced three fundamental time scales (see Sec. 2.5). First there is the persistence time τp which is
the characteristic time scale of evolution of the propulsion forces. Then there is the interaction time τ0 (1 in
our units) which sets the time scale to relax two-particle interactions. Finally there is the emergent relaxation
time scale τα (2.42), which is the typical time scale for displacements over a length scale of order 1 to happen.

We established that, in dense systems of AOUPs for which τp ≫ τ0, there exist a velocity correlation length
ξv which increases with increasing persistence time τp, and a velocity correlation time τv ∼ τp [35, 36, 78, 79,
88, 103, 158] (see Sec. 4.1). Schematically these quantities indicate that two particles within a ξv-radius at
initial time will have a similar movement for a time of order τp as a consequence of these correlations.

Close to dynamical arrest, τα ≫ τp (see Sec. 3.2). This implies that the displacements of particles on length
scales of order 1 typically happen after both the propulsions and the velocities have decorrelated. Thus these
displacements and the initial velocities are uncorrelated. On the contrary, close to the phase-separated region
of the phase diagram, τα ≲ τp (see Sec. 3.2). This suggests that displacements of order 1 are correlated with
the initial velocities. We recall that this velocity field has many vortices which scale with ξv (see Secs. 2.4, 4.1).
Thus particles are able to move distances of order 1, i.e. perform a mesoscopic flow, coherently with their
neighbours.

The emergence of mesoscopic coherent flow from microscopic interactions bears strong similarities with the
family of active systems described as turbulent [10, 93, 94, 100]. In our specific case, these flows appear in the
absence of explicit aligning interactions [34, 39]. In this Chapter, we will describe how these flows take place,
from the initial velocity field to the eventual structural relaxation. We will first characterise the static velocity
correlations in moderately dense systems of persistent AOUPs. We will then explore how these initial velocity
correlations lead to actual movement, on the scale of the interparticle distance, using single- and multi-particle
correlations. Finally, we will show how the properties of the initial velocity field influence the long-time mixing
dynamics of the system.

Some of the results of this Chapter were published in Ref. [200].
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6.1 Static velocity correlations

In this Section, we characterise the velocity field of dense persistent systems of AOUPs at a given time t.
We will quantify velocity correlations by computing the velocity correlation length ξv, and study the features
of the velocity correlation function.

The velocity field of dense and persistent system (see Fig. 6.1(a)) is complex, with many jets (regions with
aligned velocities) and swirls (or vortices, regions with velocities orthogonal to the radius to a single point).
Moreover the velocity is greatly heterogeneous (note the colour bar in logarithmic scale). Jets, swirls, and
heterogeneous velocities are generic features in dense systems of persistent self-propelled particles [35, 124]. We
will show however that the specific scaling of our velocity correlations, as well as the dynamics of our systems,
are novel features. We quantify the extension of these structures in the velocity field with the velocity correlation
function Cvv(r) (2.57). We introduce the velocity correlation length ξv by thresholding the correlation function
Cvv(ξv) = 10−2. We plot the correlation lengths and the correlation functions for different values of the
persistence time τp in Figs. 6.1(b, c) and rescale the distance with the correlation length. The correlation
length varies gradually and shows no sign of saturation at large persistence, therefore it could in principle be
tuned to any desired value by tweaking the properties of the propulsion force [35]. The good collapse of the
curves in Fig. 6.1(c) indicates that ξv is a relevant quantity to describe the velocity field. We highlight that the
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Figure 6.1: (a) Velocity snapshot. (b) Velocity correlation length ξv as a function of the persistence time τp.
(c) Velocity correlations Cvv(r) (2.57) as functions of the distance, rescaled by the velocity correlation length
ξv, for different persistence times τp. Parameter values: D0 = 1, (a) N = 4096, τp = 104, ϕ = 0.8425, (b, c)
N = 16384.

growth of our correlation length ξv with the persistence time τp is slower than the expected ∼ τ
1/2
p behaviour

[35, 88, 103, 104], we will comment on this point below.
In order to discriminate velocity correlations between jets and swirls, it is useful to consider the velocities in

the direction joining two particles (longitudinal correlations, α = ||) or orthogonal to this direction (transverse
correlations, α =⊥)

Cαvv(r) =

〈∑N
i,j=1 v

αj
i vαij δ(r − rij)

∑N
i,j=1 δ(r − rij)

〉
(6.1)

where êij = (rj−ri)/rij , and the longitudinal and transverse components of the velocities are v||ji = vi · êij and
v⊥ji = (vi ∧ êij) · ẑ. These correlation functions are related by Cvv(r) = C

||
vv(r)+C⊥

vv(r). It is noteworthy that
there is no one-to-one correspondence between between the real-space decomposition of the velocity correlations
and Fourier-space decomposition of velocity fluctuations (as computed e.g. in Refs. [39, 103]). These correlation
functions are plotted in Fig. 6.2. Longitudinal correlations are the most extended, with significant correlations
on the scale of the system size at our highest persistence time τp = 104. Transverse velocity correlations quickly
decay to negative values, and these negative correlations grow with increasing τp. This is consistent with the
emergence of swirl patterns [14]. Both longitudinal and transverse correlations increase with the persistence
time τp indicating that both jets and swirls tend to get larger as τp is increased.

As a matter of comparison to hydrodynamic descriptions of these systems, it is useful to introduce a velocity
field

v(r) =

N∑

i=1

vi δ(r − ri). (6.2)

We quantify the spatial correlations of the velocity field in Fourier space by introducing the kinetic energy
spectrum [89, 100] (see App. B for properties)

E(k) =
2π

L2
k
〈
|ṽ(k)|2

〉
, (6.3)
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Figure 6.2: (a) Longitudinal and (b) transverse velocity correlations (6.1) for different persistence times τp.
Parameter values: N = 16384, D0 = 1.
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function C(r) ∼ r−0.5e−r/10 (B.21). (b, c) Velocity correlation function in real space Cvv(r) (2.57) plotted in
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where k = |k| is the wave-vector norm, and we denote

ṽ(k) =

∫
d2r e−ik·rv(r)

=

N∑

i=1

vie
−ik·ri

(6.4)

the Fourier transform of the velocity field. For systems with inertia, the energy spectrum E(k) provides informa-
tion about the scales at which kinetic energy is accumulated [100]. This link is lost in overdamped systems, even
though E(k) is still related to the velocity correlation function via Fourier transform. The energy spectrum has
the celebrated universal Kolmogorov scaling E(k) ∼ k−5/3 in inertial turbulence [89], while there is no universal
scaling applicable to all models of active turbulence [94] (except for nematic turbulence [98]). We plot E(k)
in Fig. 6.3(a). There is a regime crossover around the wavevector norm k∗ = 2π/ξṽ. On large length scales
k ≪ ξṽ, the energy spectrum E(k) ∼ k, indicating that fluctuations of the velocities on lengths larger than ξṽ
are scale-independent

〈
|ṽ(k)|2

〉
∼ cst, and thus are uncorrelated. Therefore ξṽ has (alongside ξv) the meaning

of a correlation length. On smaller length scales, the energy spectrum scales as E(k) ∼ k−α with α ≈ 0.5, which
behaviour is interrupted at very small length scales due to the microscopic structure of the liquid [103]. This
scaling is different than what had been reported and predicted for dense and persistent systems of self-propelled
particles, i.e. α = 1 [35, 103, 104]. It is also different from previous works on active turbulence [94] which
observe α ≥ 1. We note however the exponent is close to the one measured (α ≈ 0.6) for inertial ABPs at low
density [39], even though we do not think these flows have the same origin.

We fit E(k) with the spectrum derived from a correlation function Cvv(r) ∼ r−(1−α)e−r/ξṽ (B.21), with
α = 0.5 and ξṽ = 10. Were this the exact form of E(k), it would indicate self-similar structure of the velocity field
up to the length ξṽ [201]. We obtain good qualitative but not quantitative agreement with this fit. Simulations
of larger systems with larger correlation lengths ξṽ (in comparison to the typical distance between particles)
are needed to confirm the self-similar structure we hypothesise.

We highlight that the definitions of ξṽ and ξv are different: the former comes from fitting the spectrum
E(k), and the latter comes from thresholding the correlation Cvv(r). Thus, ξṽ informs us about the long-
distance decay of velocity fluctuations, while ξv gives information about the strength of the correlations at a
given distance. These do not have to be equal, e.g. adding translational noise to the system decreases the
correlations in absolute value (and so decrease ξv) but the correlations decay at large distance on the same
scale ξṽ [202]. We observe quantitative discrepancy, by a factor of 2 to 3 for τp = 104, however both lengths
grow with increasing τp. We did not measure ξṽ systematically, therefore we do not know if its scaling with τp
is identical to ξv or if it is closer to the expected ∼ τ

1/2
p behaviour [35, 88, 103, 104]. We stress that we use

relatively modest densities compared to e.g. Refs. [35, 103], thus a possible cause for the slower increase of the
correlation length with τp may be that elastic moduli have a strong dependence on the persistence time.

Velocity correlations decay exponentially on distances of the scale of ξṽ [202]. At large distance, the correla-
tion function is negative. This is a consequence of the constraint

∑N
i=1 vi = 0 in a finite-size system [203]. We

plot in Fig. 6.3(b, c) the velocity correlation function in real space Cvv(r) (2.57) for system sizes ranging from
N = 4096 to N = 65536. We recall that Fig. 6.3(a) indicated that features of the correlation function on scales
smaller than the correlation length ξṽ did not depend on the system size. (It should be a necessity that L > ξṽ
though.) In real space, we confirm that the correlation functions on scales lower and comparable to ξṽ are not
affected by the system size. As N increases, the distance at which the correlation function becomes negative
shifts steadily to larger distances. We expect that in the limit N → ∞, the positive exponential decay of the
correlation functions extend to L→ ∞.
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6.2 Motion of a single particle and relative motion of neighbours

We showed that, due to velocity correlations at large persistence, first the picture of cage escapes constituting
the elementary relaxation process is no longer valid, and then the movement of particles is collective on several
time and length scales (see Secs. 4.3, 5.3.2). Therefore, as for the analysis of dynamical heterogeneity, the
complete description of structural relaxation necessitates multi-particle correlations. In this Section, we combine
both single- and two-particle descriptors in order to establish how static velocity correlations translate into
motion.

We introduce the mean squared separation and the mean squared displacement difference

S2(t) =

〈∑N
i,j=1;i̸=j rij(t)

2 θij
∑N
i,j=1;i ̸=j θij

〉
, (6.5)

D2(t) =

〈∑N
i,j=1;i ̸=j |∆rj(t)−∆ri(t)|2 θij

∑N
i,j=1;i ̸=j θij

〉
, (6.6)

where we have defined the cut-off function θij = Θ(A1−|rj(0)−ri(0)|/σij), with A1 = 1.15 defining the rescaled
distance below which particles are considered initially neighbouring or bonded (see (2.45)). For two particles
which were neighbours at t = 0, S2(t) varies with the distance between them at later times while D2(t) varies
with the distance these particles have travelled away from each other. At large times, both are diffusive (2.39)

S2(t), D2(t) ∼
t→∞

2MSD(t) ∼
t→∞

8Dt (6.7)

which is also expected in inertial turbulence when particles eventually lose memory of their initial separation
[204, 205]. On smaller times, in inertial turbulence and consistently with the scaling of the scale-dependent
relative movement in Kolmogorov’s theory [204], the separation is predicted to grow super-diffusively S2(t) ∼ t3

[204, 206]. We compare these dynamical functions and the single-particle MSD (2.36) in Fig. 6.4. We observe
3 different regimes which we describe below.

• At small times, particles follow their initial velocities, the movement is ballistic, MSD ∼ t2. The squared
relative displacement is also ballistic D2 ∼ t2 and satisfies D2(t) < 2MSD(t) which indicates that there are
(positive) correlations between neighbours’ velocities (the latter relation would be an equality otherwise).

• The MSD deviates from the ballistic scaling t2 around a time τc. This indicates that part of the initial
velocity correlation is lost around this time. We attribute this effect to “collision” with neighbours: the
initial velocity of a given particle leads it towards an other particle, their interaction force grows until
it significantly affects the velocity. In this regime, both the MSD and D2 are superdiffusive. We note
however that the former grows faster than the latter, indicating that the displacement of the particle in the
centre-of-mass frame grows faster than its displacement in its neighbour’s frame. Moreover, we note that
S2 remains of order 1 up to t ∼ τp, meaning that initial neighbours are most likely still neighbours. We
conclude from these observations that this regime constitutes an “advection” regime: particles travel long
distances (of order 1 at least) with their initial neighbours. We call these coherently moving ensembles of
particles correlation patches.

• At τp the propulsion dynamics pi decorrelates, and thus the 1-particle dynamics becomes diffusive as
memory of the initial velocity is lost. We recall that at large times both S2 and D2 have to be equal
to twice the MSD (6.7). At τp, both quantities are below 2MSD, they then go through a superdiffusive
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Figure 6.4: Mean squared displacement (2.36), mean squared separation S2 (6.5), and mean squared displace-
ment difference (6.6). Parameter values: N = 1024, D0 = 1, τp = 103, ϕ = 0.84.
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regime up to time τ2. This superdiffusion of two-particle quantities is reminiscent of the superdiffusion
of pair dispersion in inertial turbulence [204, 206]. This is the end of the advective regime, S2 departs
from 1, indicating that initially neighbouring particles start to separate. For times t > τ2, there is no
information left about the initial state of the system. We highlight that this time is of the same order of
the decay time of the bond breaking correlation (2.45), confirming that all initial bonds have been lost.

A natural question which arises is to know if the intermediate superdiffusive behaviour of the MSD corre-
sponds to an actual power-law regime tβ with 1 < β < 2, or if it is a smooth crossover between the ballistic and
diffusive regimes. In the former case, this could indicate e.g. Lévy-flight-like behaviour [49]. We can analyse the
MSD through the velocity autocorrelation function Cv(t) (2.58) (of which it is a double integral), and through
its instantaneous log-slope

β(t) =
∂

∂ log t
logMSD(t) =

2t

MSD(t)
⟨vi(t) ·∆ri(t)⟩ , (6.8)

which satisfies β(t → 0) = 2 (ballistic regime) and β(t → ∞) = 1 (diffusive regime). We may expect that β(t)
plateaus for τc < t < τp in the hypothesis that this intermediate regime is a true power-law regime. We plot in
Fig. 6.5(a, b) the velocity autocorrelation function and the MSD. The former decays in a two-step fashion, on
time scales which coincide with τc and τp. We propose as an ansatz that this decay correspond to the sum of
two exponentials, one for each time scale, and we fit the correlation function to the following form

Cfit
v (t) = νe−t/τc + (1− ν)e−t/τp , (6.9)

where there are two fitting parameters: the collision time τc and the relative importance of the two exponentials
0 < ν < 1. A hypothetical setting where this kind of correlation emerges is if the velocity of the particle were
the sum of two independent stochastic processes. For example, the first process could be the ensemble velocity
of the particle’s correlation patch, and the second its velocity in the frame moving with the patch. The first
process would decorrelate over time scale τp and the second τc. We use the fit (6.9) to compute the associated
MSD and log-slope of the MSD, which we additionally plot in Fig. 6.5. We observe that β(t) oscillates (see
Fig. 6.5(c)), which is qualitatively consistent with the velocity autocorrelation function being the sum of two
exponential functions, but not quantitatively. To confirm this behaviour, we would need to simulate systems
with a larger time scale separation between τc and τp.

Initially neighbouring particles start to separate around time τp, however we do not expect the pace of this
separation to be homogeneous in time as we explain below. Particles move together, over large distances, in
patches of length ξv where their velocities are correlated. Moreover, particles belonging to the same patch will
separate slower than particles belonging to different patches. Consider the ensemble of bonded particles at some
initial time, and the time needed for all these particles to eventually fall in separate patches, i.e. to reach a
separation of order ξv. If the initial correlation patches are large then there are few bonded particles belonging
to different patches and the time to break all bonds will be large. On the contrary, if these initial patches are
small then the time to break bonds will be smaller. Therefore, the heterogeneity of the correlation patches
should translate into an heterogeneity of the dynamics leading particles to fall in separate patches. To capture
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Figure 6.5: (a) Velocity autocorrelation function Cv(t) (2.58), (b) mean-squared displacement (2.36) , and
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Figure 6.6: (a) Mean separation overlap φ(t, a) (6.10c). (b) Variance of the mean separation overlap Φ(t, a)
(6.10d). (c) Length scale a∗ and time scale t∗ of maximum χS2(t, a) for systems at different persistence time
τp. Parameter values: N = 1024, D0 = 1, (a, b) τp = 103, ϕ = 0.84, (c) colours and markers correspond to the
same τp and ϕ as Fig. 6.1(c).

this, we introduce the variance Φ of the mean separation overlap

φij(t, a) = Θ(a− rij(t)) (6.10a)

φ(t, a) =

∑N
i,j=1;i̸=j φij(t, a) θij∑N

i,j=1;i ̸=j θij
(6.10b)

φ(t, a) = ⟨φ(t, a)⟩ (6.10c)
Φ(t, a) = NVar (φ(t, a)) (6.10d)

where Var(. . .) =
〈
(. . .)2

〉
−⟨. . .⟩2 denotes a variance, and we will focus on the time scale t∗ and the length scale

a∗ where it is maximum Φ(t∗, a∗) = maxt,aΦ(t, a). It bears similarity with the previously defined time- and
length-scale dependent dynamical susceptibility χ4 (4.3), with the important difference that Φ is the variance of
an average of two-particle quantities, therefore Φ(t∗, a∗) cannot be read as a typical number of particles involved
in correlated motion (contrarily to χ4(t

∗, a∗)). We will see however that the coordinates (t∗, a∗) are relevant for
the dynamics, as shown below. We show first how we can infer the time t(a) of maximum Φ at fixed length a,
and then discuss the information revealed by the length a∗ at which Φ is globally maximal.

Consider a length scale a ≳ 1, and a pair i, j of bonded particles (i.e. θij = 1). We expect rij(t → 0) ∼ 1
(particles are initially bonded) and rij(t→ ∞) ≫ a (particles diffuse away from each other). Therefore φij(t, a)
is, for all pairs and all initial times, equal to 1 (resp. 0) for very small (resp. large) t. As a consequence, the
variance Φ cancels for both limits Φ(t → 0, a),Φ(t → ∞, a) ≈ 0. We showed, for the dynamical susceptibility
χ4 (4.3), that it was maximum for a time scale t(a) where displacements are typically of the order of a, as seen
by

√
MSD(t(a)) ≈ a (see Fig. 4.6). Analogously, we expect that the variance Φ will be maximum for a time

scale t(a) at which separations rij(t(a)) are typically of the order of a. This is confirmed by Fig. 6.6(b) where,
at fixed a, Φ(t, a) peaks at a time t(a) for which

√
S2(t(a)) ≈ a.

For a given length scale a, Φ(t(a), a) characterises the width of the distribution of φ(t(a), a) (6.10b) when
considering different starting configurations. We hypothesized that the heterogeneity of the velocity field trans-
lates into the heterogeneity of the time needed to make all initially bonded particles fall into separate patches.
We thus expect that Φ(t(a), a) will be maximum for the scale ξv corresponding to the typical patch size. This is
confirmed in Fig. 6.6(c) which shows that a∗ is comparable to ξv. We conclude that t(a∗) is the typical time at
which initially neighbouring particles eventually end up in different correlation patches. We thus use τ2 = t(a∗)
as a definition for the time at which D2 and S2 eventually diffuse. While the velocity correlation length ξv
consistently increases with increasing τp, we note that the ratio τ2/τp remains almost constant at large τp (see
Fig. 6.6(c)) which suggests that it is τp which controls the dynamics.

6.3 A new class of active turbulence

Within the existing symmetry classification of active-turbulent systems [94], the natural comparison with
our system is polar turbulence with dry friction, e.g. Ref. [31]. These models do not distinguish between the
polarisation (self-propulsion vector) and the velocity which are considered aligned. This is not the case in
our model where, on the contrary, velocities and propulsions can be different and generally are. The velocity
correlations at the origin of the chaotic advection are an emerging phenomenon, in the presence of steric
interactions, and do not derive from spatial correlations of the self-propulsion forces.

However, these extended correlations come at the (computational) expense of a very large persistence time
τp ≫ τ0 and finely tuned packing fraction ϕ to avoid MIPS or dynamical arrest (see Fig. 3.6). This limitation
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Figure 6.7: Comparison of (top) velocity autocorrelation functions Cv(t) (2.58) and (bottom) kinetic energy
spectra E(k) (6.3), between (left) AOUPs at different persistence times τp, and (right) ABPs with alignment
at different alignment strength γ. Taken from Ref. [200], Fig. 2.

motivates the use of a second model of self-propelled particles, this time with weak alignment. We introduce a
model of ABPs (2.5) with the same interaction potential U and we add an alignment term to (2.5b)

θ̇i =
√
2/τp ηi +

γ

ni

N∑

j=1;i ̸=j

sin(θj − θi)Θ(2− |rj − ri|), (6.11)

where ni =
∑N
j=1;i ̸=j Θ(2− |rj − ri|) is the number of neighbours interacting with i, and γ sets the alignment

strength. We will refer to this model as aABP. We mean by weak alignment that γ is small enough so that
the system does not display long-range propulsion correlations (i.e. the system is not in a polar ordered state).
Simulations for this model were performed by Juliane Klamser [200].

The aligning interactions generate long persistence times, even if isolated particles decorrelate quickly (τp = 1
for these aABPs). This model is not exempt of spatial propulsion correlations, however these are short-ranged,
and over a length scale which is significantly smaller than the velocity correlation length ξv. This confirms
the emerging nature we described for these velocity correlations, at odd with the mechanism of correlated
propulsions described by existing continuum theories [31]. We plot in Fig. 6.7 the velocity autocorrelation
functions and the energy spectra for both models. First these show that, in both models, there is a two-step
decay of velocity autocorrelations, first at the collision time τc and then at the persistence time, which is an
emerging quantity in the aABP model. Then these also show that we can tune the velocity correlation length
by varying model parameters, the persistence time τp for AOUPs and the alignment strength γ for aABPs.

We provide a qualitative picture of the dynamics by “dyeing” particles according to their position at some
initial time t0 = 0 in the steady state, and watching them spread over time, see Fig. 6.8. At small times t ≲ τp
the rainbow pattern is deformed over the length scale of the correlation length, consistently with the picture of
correlation patches moving with respect to each other. At larger times t ≳ τp these patches decorrelate from
their initial shapes and different groups move together. The resulting distortion of the pattern, with mutually
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invading branches that stretch and fold over a range of length scales, resembles advective mixing (see times t1,
t2). Only at large times particles diffuse into regions of different colours which eventually blends the dyes (see
time t3). We highlight with three tracer particles (▲, ▶, ◀), all initially close, that particle pairs can be either
advected large distances together over these large times or be separated almost immediately. An additional
tracer particle (▼) shows a particle whose displacement remains small along this time lapse, confirming the
important heterogeneity of the movement. These time-dependent patterns are qualitatively similar to the ones
observed in the aABP model [200] (see Figs. 4(a, d)) and to the chaotic advection created in time periodic flows
[207]. Finally, we stress that the emerging mesoscale chaotic flows happens over large but finite length and time
scales which are both controlled by the persistence time τp.

Therefore we observe in two different models of dense active matter the emergence of persistence-induced
mesoscopic flow, with identical scalings of the velocity correlations. These observations hint at a possible
universal nature of these correlations and of the dynamical behaviour we described. We thus argue for a new
class of active turbulence, not captured by the classification of Ref. [94], where crowding and persistent motion
play a central role in creating chaotic collective motion. This new class should encompass diverse models where
crowding is important, such as vibrated disks [208], self-aligning self-propelled particles [5, 209], or self-propelled
Voronoi models of confluent tissues [210].

6.4 Conclusion: persistence-induced mesoscopic flow

We reported that the mesoscale chaotic flows characteristic to active turbulence are observable in one of the
simplest active matter model: overdamped athermal self-propelled particles in the absence of aligning interac-
tions. Mesoscale velocity correlations emerge from the competition between persistent forcing and crowding.
The associated velocity pattern displays jets and swirls, reminiscent of multiscale flow patterns in inertial turbu-
lence, with a characteristic length scale ξv which is controlled by the persistence time τp. At moderate density,
particles are able to move along these velocity correlations over a time scale comparable to τp, resulting in a
complex collective flow in which particles are collectively advected along the velocity field (see Fig. 6.8). At
large times t≫ τp the memory of the initial velocity field is lost and the movement is diffusive.

The correlations we report are distinct from what had been previously reported in the literature for dense
persistent active matter [35, 88, 103, 104]. Part of this discrepancy may be attributed to the failure of the
hypothesis of a persistent perturbation around a minimum of the interaction potential U [35, 88]. Indeed our
analysis shows that the structure evolves on time scales smaller than the persistence time τp. However, as we
were not able to check our model against the approximations of hydrodynamic theories [103, 104], it remains
unknown if an extension of the latter could include our results. Furthermore, these correlations are distinct
from the correlations observed in other models of active turbulence [31, 94]. This may indicate that our model
belongs to a distinct class of turbulent models, in which crowding plays a central role.
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7 | Dense and persistent monodisperse systems

We expect dense monodisperse systems of self-propelled particles to display order, either orientational or
translational, at large packing fraction ϕ [46, 47, 49]. Previous studies have shown that this would impact in
a non-trivial way the relaxation dynamics of the system [49–51]. In this Chapter, we apply the methodology
we have developed to understand the relaxation of persistent polydisperse particles to characterise how these
mechanisms are affected by the emergence of order.

Some of the results of this Chapter were extracted from previous unpublished work by Daniel Vågberg [211],
and some others are related to ongoing experimental work in collaboration with the groups of Olivier Dauchot
and Denis Bartolo.
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7.1 Phase diagram of monodisperse AOUPs

We first map the phase behaviour of monodisperse AOUPs as a function of the persistence time τp and
the packing fraction ϕ, and at constant free-particle self-diffusion constant D0, similarly to mapping in the
polydisperse case (see Chap. 3). At a given persistence time, as introduced in Sec. 2.3.1.2, we compute the
packing fraction ϕ6(τp) at which the hexatic order correlation function Cψ6ψ6

(r) (2.30) goes from an exponential
to an algebraic decay indicating quasi-long-range orientational order, and the packing fraction ϕg(τp) at which
the translational order correlation function |1 − g(r)| (2.32) goes from an exponential to an algebraic decay
indicating quasi-long-range translational order. Similarly to Sec. 3.1, the boundary of the MIPS region are
determined via the inspection of the distribution of the local packing fraction ϕloc (2.26).

We plot in Fig. 7.1 the phase diagram of monodisperse AOUPs interacting via a WCA potential at constant
D0 = 0.1. As previously reported for polydisperse AOUPs (see Fig. 3.6), MIPS emerges when the persistence
length ℓp is large compared to the typical interparticle distance [1, 46, 109, 125, 127, 129]. At large ϕ, the
system first transitions to an hexatic solid, and then to an ordered solid [46, 47, 49], and thus ϕg(τp) > ϕ6(τp)
for all τp. Moreover, both transition packing fractions shift to significant larger values as τp is increased, which
may explain why Ref. [51] does not observe an hexatic phase at lower densities. It is also noteworthy that for
ℓp ≳ 1 (i.e. τp ≳ 10) the transition to the solid regime (with quasi-long-range translational order) was not

Figure 7.1: Phase diagram for monodisperse AOUPs at constant free-particle self-diffusion constant D0 = 0.1,
in the space spanned by the persistence length ℓp =

√
D0τp (2.12) on the y-axis and the packing fraction ϕ on

the x-axis. Dashed lines are isolines of ϕloc6 = (1/N)
∑N
i=1 ⟨|ψ6,i|⟩. Taken from Ref. [211].
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observed due to the difficulty of simulating the steady state of the system at these large densities. In addition to
these phases, there is a crossover cluster liquid region, in between MIPS and the hexatic phase, in which large
dense hexatic clusters are formed while global order remains low. These clusters are unstable, they coalesce and
separate quickly, so that the system remains fluid. These observations are consistent with the experimental work
of Ref. [51]. Finally, in the domains of large persistence corresponding to the emergence of MIPS, increasing τp
stabilises the hexatic phase, as seen by the late decrease of ϕ6(τp) with increasing τp for ℓp ≳ 10. In this limit,
the hexatic domain transition line crosses MIPS, indicating that the dense MIPS cluster is an hexatic phase,
consistently with the result of Ref. [46].

In the cluster liquid region, both conditions of crowding and persistent propulsions are met, and thus velocity
correlations should be important. Analogously to our investigation of the influence of these correlations to the
approach to dynamical arrest in polydisperse systems (see Chap. 4), we may investigate their influence on the
dynamics of monodisperse systems close to the hexatic and solid transitions.

7.2 Static correlations

To avoid phase separation, we focus on persistent systems (D0 = 0.1, τp = 250) with a moderate persistence
length (ℓp = 5). However, at small packing fraction (ϕ ≈ 0.70, Fig. 7.2(a, b)), we observe large density
fluctuations due to the proximity of the MIPS critical point.

Fig. 7.2(a, c, e, g) shows the argument of the hexatic order parameter arg(ψ6) (2.28) for each particle in
systems with increasing packing fraction ϕ. The hexatic order correlation length ξψ6

, which characterises the
width of single-colour patches (which we will call hexatic patches), grows with increasing ϕ, until it spans the
whole system at ϕ = 0.87. At this density, spatial correlations of ψ6 reach a non-zero plateau (see Fig. 7.3(b))
indicating that orientational order is long-range as in a solid phase. This phase still contains small defective
regions in the form of vacancies (i.e. one to a few lattice sites missing within the perfect crystal arrangement),
as well as large defective regions where the orientation of the hexatic order mismatches and where the order
itself (both orientational and translational) is low. The distance between these defects is the distance over which
the order of the structure is correlated, it should thus correspond to the translational order correlation length
ξg. The existence of such a length is incompatible with a two-dimensional solid phase in which translational
order correlations are scale-free. As the packing fraction ϕ is increased, we observe that defects are concentrated
in the boundaries between regions of distinct hexatic orientation. Moreover these regions are exempt of free
dislocations and the dynamics within them is mostly arrested or concentrated in fault lines. Therefore these
regions may be considered as small crystallites surrounded by liquid defective regions.

Fig. 7.2(b, d, f, h) shows the velocity field with increasing ϕ. This field is correlated over a length scale
ξv, and this length increases with ϕ (see Fig. 7.3(c)). Qualitatively, we observe at moderately large densities
(ϕ ≲ 0.82) that regions of coherent velocities (linearly correlated or forming swirls) are contained within hexatic
patches. In the hexatic phase (ϕ = 0.87), ξψ6 is of the order of the system size L while ξv is smaller. We
note that the velocity correlation length ξv is itself finite in a perfect crystal [88], we may thus expect that it
remains finite (and lower) in less ordered solids. Therefore, there should be a hypothetical, density-dependent,
maximum length scale for the velocity correlations, which the hexatic length ξψ6

eventually exceeds at large ϕ.
The translational order correlation length ξg is also expected to increase with ϕ. Where this length is finite
(i.e. smaller than the system size) and characterises the distance between defects, it might be an upper limit
to ξv if defects kill the persistence-induced velocity alignment mechanism. It is necessary to disentangle the
role of these different length scales: in the disordered liquid, are distinct hexatic patches formed by unaligned
velocities or are these patches the support for velocity correlations whose length they cannot exceed? in the
hexatic phase, do velocity correlations create defects or are these defects obstacles to the extension of velocity
correlation?

In order to bring answers to these questions, we manually fit the correlation functions Cvv(r) (2.57), Cψ6ψ6
(r)

(2.30), and |1− g(r)| (2.32), to exponential functions with scales ξv, ξψ6
, and ξg respectively. We report these

lengths in Fig. 7.3(d). We observe up to ϕ ≈ 0.82 that the velocity correlation length ξv and the translational
order correlation length ξg are identical and increase with packing fraction ϕ. On this same range of ϕ we observe
that the hexatic correlation length ξψ6 is significantly greater than the other two lengths. We may infer that in
this regime the velocity correlations are cut by defects and thus do not scale larger than the translational order.
At larger ϕ, in the regime where ξψ6

is of the order of the system size, we observe that ξg increases significantly
faster than ξv, and these thus decouple. This is consistent with the expectation that ξg reaches the system size
at large packing fraction ϕ (see Fig. 7.1). In this regime we thus have that orientational and translational order
is conserved on the length scale of ξv. At equivalent structure we should thus expect that ξv would increase
with the persistence time τp.

Qualitatively, the dynamics of the system in the liquid phase shows that the lifespan of the cluster is larger
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Figure 7.2: (a, c, e, g) Snapshots with colours corresponding to the argument of the hexatic order parameter
arg(ψ6) (2.28). (b, d, f, h) Velocity snapshots. Parameter values: N = 16384, D0 = 0.1, τp = 250.
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Figure 7.3: (a, b) Hexatic order parameter correlation function Cψ6ψ6(r) (2.30) for different packing fractions
ϕ. (c) Velocity correlation function Cvv(r) (2.57) for different packing fractions ϕ. (d) Velocity correlation
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respectively. Parameter values: N = 16384, (a) D0 = 1, τp = 10−2, (b-d) D0 = 0.1, τp = 250.

than the lifespan of velocity correlations (which scales with τp, see Chap. 4). Moreover, the absolute velocity
in clustered regions is too low to significantly move clusters away from each other in the time scale of τp. It
is noteworthy that this is in contrast with the situation described for large-persistence turbulent systems (see
Chap. 6). We thus conclude that, in the liquid regime, hexatic clusters are the support to velocity correlations,
i.e. the size of these clusters sets a maximum extent for velocity correlations, however the latter do not contribute
significantly to the creation and melting of clusters. In the solid phase, we expect the velocity correlation length
to assume its value for a perfectly ordered packing. This should be verified by comparing the influence of the
persistence time τp on structural order and on ξv.

7.3 Relaxation dynamics

Because these systems are far from equilibrium, there is no a priori reason for the emergence of structural
order to correlate with a significant slowdown of the dynamics [49–51]. We thus now turn to quantitative
dynamical descriptors of these dense ordered systems.

We plot in Fig. 7.4 the MSD (2.36) at different packing fractions ϕ, for small-persistence (D0 = 1, τp = 10−2)
and large-persistence (D0 = 0.1, τp = 250) systems. In the small-persistence case, we observe for packing
fractions ϕ ≳ 0.94 that the hexatic order correlations go to a plateau at large distance (see Fig. 7.3(a)),
indicating a solid phase. We observe in the MSD that the transition to this solid phase is accompanied by the
emergence of a subdiffusive regime, indicating a caging regime, similarly to the behaviour of dense disordered
liquids close to the glass transition (see Chap. 3). In the large-persistence case, despite long-range hexatic order
setting in at ϕ ≳ 0.87 (see Fig. 7.3(b)), we do not observe any caging effect and the MSD goes smoothly from
the initial ballistic to the eventual diffusive behaviour as it would in a simple liquid. We highlight that this
behaviour was already reported in the case of athermal vibrated disks [51].

This simple MSD however hides an important heterogeneity in the relaxation process. Indeed we observe, at
the largest packing fraction ϕ of our persistent system, that most particles are immobile in the crystal structure
while large defective regions are very motile. It is the movement of these regions which relaxes the system.
We show in Fig. 7.5 snapshots of the system at different times, highlighting the proportion of lost neighbours
since initial time Cb,i(t) (5.24) (Figs. 7.5(a, c, e, g)) and the argument of the hexatic order parameter arg(ψ6)
(2.28) (Figs. 7.5(b, d, f, h)) at the corresponding times. We observe at small times that the particles which have
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Figure 7.4: Mean squared displacement (2.36) for different packing fractions ϕ. Parameter values: N = 16384,
(a) D0 = 1, τp = 10−2, (b) D0 = 0.1, τp = 250.
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Figure 7.5: (a, c, e, g) Snapshots of the system highlighting the local bond breaking correlation Cb,i (5.24)
between time t = 0 and a lag time of (a) t/τp = 2 (Cb = 0.96), (c) t/τp = 7 (Cb = 0.86), (e) t/τp = 28
(Cb = 0.64), (g) t/τp = 107 (Cb = 0.29). (b, d, f, h) Snapshots of the argument of the hexatic order parameter
arg(ψ6) (2.28). Parameter values: N = 16384, D0 = 0.1, τp = 250, ϕ = 0.87.
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relaxed are located around the large defective regions. As time increases, these relaxed regions extend until
the whole system is relaxed. This process of defects moving around the system, while other particles remain
caged, conserves the global hexatic order. Therefore, even though the system is structurally a solid, it appears
dynamically as a liquid [50, 51]. In other terms, the structure relaxes on time scales smaller (i.e. faster) than
the global hexatic order. This process is reminiscent of dynamical facilitation and naturally leads to dynamical
heterogeneity (compare to Fig. 5.8).

7.4 Conclusion: relaxation in dense monodisperse systems

Our model of isotropic self-propelled particles shows, in the monodisperse case at low persistence, a first
transition with increasing packing fraction ϕ to an hexatic phase characterised by quasi-long-range orientational
order and short-range translational order, and then a second transition at larger ϕ to a solid phase characterised
by long-range orientational order and quasi-long-range translational order [46, 47, 49]. At large persistence time
τp, it remains unclear if this two-step transition scenario holds.

At intermediate density (ϕ ≈ 0.85), the system is characterised by the presence of crystallites (within which
both orientational and translational order is strongly correlated), immersed in a disordered fluid of defects (see
Fig. 7.2(e)). Crystallites continuously coalesce and separate [51] over time scales larger than τp. The size of
these crystallites sets an upper limit for the velocity correlation length (see Fig. 7.2(f), 7.3(d)).

At large density (ϕ ≈ 0.87), we find a phase with both long-range orientational order (as a solid phase) and
short-range translational order (as a liquid or hexatic phase). We attribute the latter to the existence of large
defective regions (see Fig. 7.2(g)). These regions are not localised dislocations as would be expected e.g. in an
hexatic phase according to the KTHNY scenario, but rather active liquid bubbles. These are very motile and
move across the system, thus relaxing the structure while preserving the global hexatic order (see Fig. 7.5).
This process is akin to dynamical facilitation. As a consequence, the mean squared displacement (which is
dominated by fast particles) shows no sign of caging, contrarily to low-persistence solid phases (see Fig. 7.4).
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8 | Conclusion and perspectives

8.1 Summary

We introduced in Chap. 2 a model of isotropic self-propelled particles, namely active Ornstein-Uhlenbeck
particles (AOUPs) (2.15, 2.16). We solve numerically the equations of evolution for the positions ri and the
propulsions pi, given the number of particles N , the polydispersity I, the free-particle self-diffusion constant
D0, the persistence time τp, and the packing fraction ϕ. This model has few control parameters, yet has a rich
phenomenology. In the thermodynamic limit N → ∞ at fixed I, the regimes corresponding to these different
features may be understood by introducing a number of time and length scales and studying their relative
importance. The time scales are: the interaction time τ0 (1 in our units (2.14)) which sets the time scale to
relax two-particle interactions, the persistence time τp (2.7) which sets the time scale over which the propulsion
forces evolve, and the relaxation time τα (2.42) which sets the time scale over which the structure relaxes. The
length scales are: the typical length between particles (of order 1), and the persistence length ℓp (2.12) which
sets the typical length a particle travels before losing memory of its orientation. Equilibrium-like behaviour is
found in the limit τp ≪ τ0 [22]. In the opposite limit, τp ≫ τ0, due to the coupling between density fluctuations
and persistent forces [35, 103, 156], the system acquires several non-equilibrium properties: steeply decreasing
velocity variance with increasing packing fraction, fat-tailed distributions of velocities, and mesoscale velocity
correlations.

The introduction of polydispersity (I = 0.2 in our case) frustrates structural order, this enabled us to
characterise the different disordered phases of AOUPs and their dynamics. We built in Chap. 3 the phase
diagram of our model (see Fig. 3.6), in the polydisperse case, in the space spanned by the persistence time τp
and the packing fraction ϕ. We identified three disordered phases: MIPS at moderate density and ℓp ≳ 1 [1],
the arrested glass at large ϕ [82], and the homogeneous liquid. In the arrested glass, τα ≫ τp (see Fig. 3.1),
while in MIPS τα ≲ τp (see Fig. 3.5). The difference between these two limit regimes implies the existence of
a dense homogeneous liquid phase at large persistence (τp ≫ τ0) whose dynamics interpolates from one to the
other. This is in stark contract with monodisperse (I = 0) systems, where dense phases of persistent particles
are orientationally and possibly translationally ordered [46]. We first studied the persistent liquid close to
dynamical arrest (τα ≫ τp) and then the persistent liquid close to MIPS (τα ≲ τp).

We proposed in Chap. 4 a microscopic study of the dynamics in the homogeneous liquid on the path
to dynamical arrest, in the limit τp ≫ τ0. First, we characterised the emerging velocity correlations. We
established these extend over a length scale ξv which grows with the persistence time τp, and over a time scale
τv ∼ τp (see Figs. 4.2, 4.3). As a consequence of persistent forces, the system always sits close to a force-balanced
configuration (see Fig. 4.1). This motivated the introduction of an effective potential energy Ueff (4.1) which is a
function of both positions and propulsions, and whose local minima correspond to force-balanced configurations.
In the equilibrium limit τp ≪ τ0, the dynamics may be mapped to a series of activated jumps between local
minima of U [57]. In the persistent limit τp ≫ τ0, dynamics is intermittent (see Fig. 4.4): the system is in
a force-balanced configuration ∇iUeff = 0 which deforms smoothly with the evolution of propulsions pi until
this minimum is destabilised and the system quickly rearranges. This dynamics resembles plasticity in slowly
sheared amorphous solids [34, 58]. Despite this difference in nature of the small-time t≪ τα dynamics between
the small- and large-persistence systems, both display important dynamical heterogeneities (see Figs. 4.5, 4.6),
with movement over the time scale τα being correlated over increasing length scales as τα increases.

We took advantage of this effective potential representation to directly simulate the slow dynamics, from
times t ≲ τp to times t ≳ τα, in the limit τp → ∞ (see Chap. 5). To this effect, we used the activity-
driven dynamics (ADD) algorithm [169] which is a quasistatic approximation of the dynamics in this limit.
Similarly to other quasistatic methods such as athermal quasistatic shear (AQS) [58], ADD is decomposed
into two elementary processes: sequences of elastic deformations in which the configuration of the system
smoothly adapts to the evolution of propulsion forces, interrupted by plastic events which trigger instantaneous
rearrangements (see Fig. 5.1). We denoted τres the typical time between two consecutive plastic events. During
elastic deformations the movements of the particles are spatially correlated over the scale of the system (see
Fig. 5.2). Plastic events take the form of avalanches, meaning that large-scale motion (including a large number
of particles) may be triggered by an infinitesimal local change. We find that the participation in plastic events
has a broad distribution and that these rearrangements trigger large elastic deformations far from their core
(see Fig. 5.3(a, b)). Therefore, to characterise changes in the local structure around a given particle, we have to
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take into account multi-particle quantities. To this effect we introduced the bond-breaking correlation function
Cb(t) which decorrelates over time τb [142]. We found that the dynamics slows down (see Fig. 5.6) and becomes
more heterogeneous on the time scale of τb (see Figs. 5.8, 5.9(a)) as the self-propulsion velocity is decreased.
We simulated the regime τres ≲ τp, in this case the dynamics is nearly diffusive at all times (see Fig. 5.4). In
the regime τres ≫ τp, we may recover a two-step relaxation scenario, however to the best of our abilities we
have not been able to simulate it. Finally, due to taking the limit of large persistence time τp → ∞ at fixed N ,
there is a dynamical length which scales with the system size. We thus find that the average dynamics of the
system and its fluctuations both depend on N (see Figs. 5.7, 5.9(b)).

Turning to the persistent liquid close to MIPS (see Chap. 6), the limit τα ≲ τp indicates that large displace-
ments (of order at least 1) are correlated with the initial velocity field, the latter of which is correlated in space
over a large length scale ξv in the limit τp ≫ τ0 (see Figs. 4.2(a, b)). We thus find the emergence of mesoscopic
coherent flows in this regime. The velocity pattern, composed of large jets and swirls, is reminiscent of multi-
scale flow patterns in inertial turbulence. We observe on time scales of several τp a chaotic and advective flow,
which is characteristic of active turbulence [94] (see Fig. 6.8). In contrast to previous models displaying active
turbulence, in particle dry polar models [100] which are the closest to our own model, velocity correlations are
not the consequence of underlying alignment-induced propulsion correlations. Indeed, in our setting, velocity
correlations emerge from the competition between crowding and persistent forces. We observe that these cor-
relations, which are short-ranged, exhibit a scaling of the energy spectrum E(k) ∼ k−0.5 on small length scales
(see Fig. 6.3). This behaviour is distinct from previously reported E(k) ∼ k−1 scaling in similar models [35, 103]
and distinct from those reported for several active-turbulent systems [94]. However we do find a similar scaling
for a model of aligning ABPs in the apolar regime where crowding is important in building velocity correlations
(see Fig. 6.7). We thus hypothesize these models belong to a new class of active turbulence, not captured by
the classification of Ref. [94], in which crowding plays a central role. Further research could elucidate if models
as diverse as vibrated disks [208], self-aligning self-propelled particles [5, 209], or self-propelled Voronoi models
of confluent tissues [210] display the same characteristics.

Given the question posed in the introduction (Chap. 1), how does collective motion emerges from the compe-
tition between crowding and persistent forcing in isotropic active systems?, we summarise in Fig. 8.1 our findings
in the polydisperse case. In the limit τp ≪ τ0, we recover equilibrium-like dynamical heterogeneities on the time
scale τα ≫ τp. At large persistence, τp ≫ τ0, extended velocity correlations emerge. We distinguish two forms of
disordered collective motion. At large packing fraction, close to dynamical arrest, we observe similar dynamical
heterogeneities on the time scale τα ≫ τp. At moderate density, close to MIPS, we observe mesoscopic flow
with chaotic advection on the time scale τp ≳ τα, similar to active turbulence. Due to the simplicity of the
model, we expect the results we have presented to be generic over numerous active matter systems in which
crowding effects compete with propulsion forces. More particularly, we think the various mechanisms we have
described for the emergence of collective motion in simple active matter may inform the dynamics of more
complex systems, e.g. dense self-propelled colloids [12, 13, 171] and dense cell tissues [5–7, 70].

In the monodisperse case, at small persistence time τp ≪ τ0, the disordered liquid transitions to an hexatic
phase at large packing fraction ϕ, with quasi-long-range orientational order and short-range translational order
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(see Chap. 7). This picture evolves at moderate persistence (ℓp ≲ 10, τp ≫ τ0). For intermediate packing
fractions ϕ, we find a cluster liquid phase in which small crystallites are formed but do not percolate into a
system-wide ordered phase [211] (see Figs. 7.1, 7.2). At larger ϕ, the system develops long-range translational
order, yet it features large defective regions which are active liquid bubbles (see Fig. 7.5). These bubbles move
through the system to relax the entire structure while preserving the global hexatic structure. The presence of
these large defects, different from isolated dislocations, is in contradiction with the KTHNY scenario. Further
research should be devoted to the characterisation of these defective regions, such as the dependence of their
density, size, and motility on the model parameters. It is also yet unknown how general this process may be
within active matter models.

8.2 Future perspectives

Our work opens new questions on the behaviour of simple systems of self-propelled particles. Moreover, since
experiments on self-propelled colloids are already available, in particular Janus colloids [10, 12, 13, 212, 213],
our work offers new avenues for possible applications of these systems. We summarise in this Section some of
these.

8.2.1 Coarsening of propulsions

We recall that persistence-induced velocity correlations do not necessitate propulsion alignment and thus
emerge in the absence of propulsion force correlations [36, 88]. Yet it was reported that in infinitely-persistent
systems, propulsion force correlations may emerge, even though there is no explicit aligning interactions [214].

Simulations with quenched self-propulsion force and started from an initial uncorrelated configuration show
that when a given particle comes in contact with a new particle, these tend to travel longer times together if
their propulsion directions are similar than if they are orthogonal. Through this sorting of neighbours, patches
of particles with similar propulsions coarsen, and the system acquires finite-size propulsion correlations. To the
best of our knowledge, there is no study of the steady state of these correlations in infinitely persistent systems,
and in particular of the dependence of the propulsion correlation length on dynamical properties of the system
and on the system size.

Moreover, it remains unclear if these correlations can emerge in finite-persistence systems. We hypothesize
that this may be possible under two conditions. First, that there is a time scale τn characterising the time a
particle needs to find neighbours with similar propulsions. This time, which should depend on dynamical prop-
erties of the system and possibly on the system size, must be smaller than the time over which the propulsions
evolve, i.e. τp. Second, particles should stay significantly longer alongside particles with similar propulsions
than alongside others. (In the infinitely-persistent case, the first condition is met because τp = ∞, and we
observe the second condition.) We have established that moderately dense persistent systems display chaotic
mesoscopic flows in which, schematically, particles move in blocks with their neighbours over the time scale τp
before creating new blocks and moving again. Particles deep within these blocks only exchange a few neighbours
while particles on the outer rim quickly lose neighbours belonging to other blocks. This coherent movement
brings the particles at a distance estimated by the standard deviation of displacement at τp from their initial
positions, and this distance may be large compared to the interparticle distance (of order 1). In principle, this
distance can be made as large as desired. This kind of flow may thus be a mechanism by which particles in
the outer rim get to explore the system and find particles with similar orientations. This might be explored in
future research.

8.2.2 Isotropic active turbulence in confinement

The ability to control the flow of simple active matter with external constraints has important practical
applications such as drug delivery or material transport [215]. Recent experiments on two-dimensional con-
fined microtubule-based active nematics [9] as well as aligning vibrated disks [216] show that confinement may
induce regular spatiotemporal flow patterns. Concerning isotropic active matter, simulations of an effective one-
dimensional system active Brownian particles (ABPs) showed that, in the regime where the persistence-induced
velocity correlation length is of the size of the closed system, the whole system is able to move coherently in
an ordered fashion [217]. Finally, using strong isotropic attraction within a system of two-dimensional ABPs, it
was demonstrated that flocking may emerge in a system of isotropic monodisperse self-propelled particles [37].
In the polydisperse setting, where we have observed the emergence of active-turbulent flows, the interaction
between the latter coherent dynamics and external confinement with increasingly complex geometries remains
unexplored.
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8.2.3 Using velocity correlations
The study of persistence-induced velocity correlations [35, 103, 156] relies on exponentially-decaying velocity

autocorrelations (2.7). This is a very general hypothesis, which is verified for active Ornstein-Uhlenbeck parti-
cles, active Brownian particles, as well as run-and-tumble particles. However it could be possible to generate
Gaussian-distributed propulsion forces whose autocorrelations decay slower or faster than exponential. This
may be achieved by e.g. having the propulsion forces follow a continuous time random walk with appropriate
waiting-time distributions [218]. There is a fundamental interest in this. First, scale-free velocity time autocor-
relations might produce scale-free velocity spatial correlations. Second, fluctuations of the active force, which
break equipartition of energy [35], may be used to stabilise crystalline packings in two dimensions [219].
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A | Residual force

Patinet et al. [183] use the residual force f res,i introduced by Lemaître [182] to identify regions with strong
non-linear rearrangements.

We can compute the Taylor expansion of the force at time t

− ∂U

∂riγ
({rjδ(t)}j,δ) = − ∂U

∂riγ
({rjδ(0) + ∆rjδ(t)}j,δ)

= − ∂U

∂riγ
({rjδ(0)}j,δ)−

∑

k,ε

[
∂2U

∂riγ∂rkε
({rjδ(0)}j,δ)

]
∆rkε(t) +

∑

k,ε

O(∆rkε(t)
2)

= − ∂U

∂riγ
(0)−

∑

k,ε

Hiγ,kε(0)∆rkε(t) +
∑

k,ε

O(∆rkε(t)
2)

(A.1)

where H(0) is the Hessian matrix (5.13) computed with the positions at time 0. In ADD the effective potential
Ueff (4.1) is minimised at all times t, therefore −∂riγU(t) = −(piγ(t)− piγ(t)). We introduce the residual force
f res,i(t) and the linear force f lin,i(t) which are related by

fres,iγ(t) =
∑

k,ε

Hiγ,kε(0)∆rkε(t)−
∂U(t)

∂riγ
+
∂U(0)

∂riγ

=
∑

k,ε

Hiγ,kε(0)∆rkε(t)− ((piγ(t)− piγ(t))− (piγ(0)− piγ(0)))

= flin,iγ(t)− ((piγ(t)− piγ(t))− (piγ(0)− piγ(0))).

(A.2)

This definition ensures that fres,iγ(t) = 0 if and only if the first-order Taylor expansion (A.1) is exact, i.e. if
displacements {∆rj(t)}j are elastic.

With actual data, the movement is never purely elastic. We compute histograms of the norm of the residual
force for different t (Fig. A.1), which should be bimodal at intermediate times, with a separation at a fixed value
|f res| which we can identify to the threshold above which a particle has rearranged (see Ref. [183], Fig. SM2).
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Figure A.1: (a, d) Histogram of the log-norm of displacements |∆ri(t)| for different lag times t′. (b, e)
Histogram of the log-norm of the linear force |f lin,i(t)| for different lag times t. (c, f) Histogram of the log-norm
of the residual force |f res,i(t)| for different lag times t′. Dashed lines are added as guides to the eye. Parameter
values: N = 1024, δt′ = 10−2, (a-c) v0 = 0.8, (d-f) v0 = 0.9.
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B | Energy spectrum

We provide in this Appendix the proper definitions and properties of the energy spectrum E(k).

B.1 Definition and reference-frame properties

Given a velocity field V (r) =
∑
i ṙiδ(r − ri) we compute its Fourier transform

Ṽ (k) =

∫
d2r V (r) e−ik·r =

∑

i

ṙi e
−ik·ri (B.1)

V (r) =

∫
d2k Ṽ (k) eik·r (B.2)

such that the average kinetic energy
〈
|V |2

〉
=

1

L2

∫
d2r

〈
|V (r)|2

〉
=

1

L2

∫
d2k

〈
|Ṽ (k)|2

〉
=

1

L2

∫
dk 2πk

〈
|Ṽ (k)|2

〉
|k|=k

=

∫
dk E(k) (B.3)

where we have used Parseval’s theorem, and introduced the kinetic energy spectrum

E(k) = E||(k) + E⊥(k), E||(k) =
2πk

L2

〈
|Ṽ (k) · k̂|2

〉
|k|=k

, E⊥(k) =
2πk

L2

〈
|Ṽ (k) ∧ k̂|2

〉
|k|=k

, (B.4)

with k̂ = k/|k|. We stress that we assumed isotropy so that we can replace the Fourier coefficient F(k) by
its average value F(k) over all different orientations of the vector k (|k| = k). In practice, we average over
vectors k = (2πm/L, 2πn/L) such that m,n ∈ Z, |k| ∈ [k − δk/2; k + δk/2] with δk = 0.1. By virtue of the
Wiener-Khinchine theorem

⟨V (0) · V (R)⟩ = 1

L2

∫
d2k eik·R

〈
|Ṽ (k)|2

〉
=

∫
dk J0(kR)E(k) (B.5)

where J0 is the 0-th Bessel function of the first kind.
We introduce the velocities respectively to the centre-of-mass velocity V

V =
1

N

N∑

i=1

ṙi, vi = ṙi − V , ṽ(k) =
∑

i

vie
−ik·ri (B.6)

such that
∑
i vi = 0. We can show

〈
|ṽ(k)|2

〉
=

N∑

i,j=1

vi ·vje−ik·(ri−rj) =
〈
|Ṽ (k)|2

〉
−2R

[〈
ṽ(k) ·

N∑

i=1

eik·riV

〉]
−
〈
|V |2

N∑

i,j=1

e−ik·(rj−ri)

〉
(B.7)

where R[. . .] denotes the real part. We expect the centre-of-mass velocity V to be independent from positions
ri and velocities vi with respect to the centre of mass, and thus

〈
ṽ(k) ·

N∑

i=1

eik·riV

〉
=

〈
ṽ(k)

N∑

i=1

eik·ri

〉
·
�
��

〈
V
〉
= 0 (B.8)

and 〈
|V |2

N∑

i,j=1

e−ik·(rj−ri)

〉
=

〈
|V |2

〉
〈

N∑

i,j=1

e−ik·(rj−ri)

〉
=

〈
|V |2

〉
NS(k) (B.9)

where S(k) is the structure factor (2.33). We note that
〈
|Ṽ (k)|2

〉
= O(N),

〈
|V |2

〉
= O(1/N) (B.10)

therefore the term (B.9) is O(1) and is thus subdominant in (B.7). In the large-N limit, we thus expect
〈
|Ṽ (k)|2

〉
≈

〈
|ṽ(k)|2

〉
(B.11)

and can compute the energy spectrum (B.4) from either V or v.
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B.2 Low-k limit

We have exactly 〈
|Ṽ (k = 0)|2

〉
= N2

〈
|V |2

〉
(B.12)

and thus
E(k) ∼

k→0

2πk

L2

〈
|Ṽ (k = 0)|2

〉
= 2πkρN

〈
|V |2

〉
(B.13)

where ρ = N/L2 is the number density. We can also derive the limit for the individual parts by noting that

〈
|Ṽ (k) · k̂|2

〉
|k|=k

=
1

2π

∫
dθ

〈
|Ṽ (k) · k̂|2

〉
=

1

2π

∫
dθ

〈∣∣∣∣∣
N∑

i=1

e−ik·riV i · k̂
∣∣∣∣∣

2〉
(B.14)

where θ ≡ arg(k) so that V i · k̂ = Vi,x cos θ + Vi,y sin θ. We take the k → 0 limit in (B.14)

〈
|Ṽ (k) · k̂|2

〉
|k|=k

=
k→0

1

2π

N∑

i,j=1

∫
dθ

[
⟨Vi,xVj,x⟩ cos2 θ + ⟨Vi,yVj,y⟩ sin2 θ + ⟨Vi,xVj,y + Vi,yVj,x⟩ cos θ sin θ

]

=
1

2

N∑

i,j=1

⟨V i · V j⟩ =
〈
|Ṽ (k = 0)|2

〉

(B.15)
from which we conclude

E||(k) =
k→0

E⊥(k) =
k→0

1

2
E(k) (B.16)

using (B.4).

B.3 Large-k limit

We expect to have

〈
|Ṽ (k)|2

〉
=

N∑

i,j=1

〈
V i · V je

−ik·(ri−rj)
〉

=
k→∞

N∑

i,j=1

⟨V i · V j δij⟩ =
N∑

i=1

〈
|V i|2

〉
(B.17)

which is lesser than
〈
|Ṽ (k = 0)|2

〉
, consistently with Ref. [78].

B.4 Energy spectrum from correlation function

It is also possible to evaluate the energy spectrum E(k) from the correlation function (inverse as (B.5))

〈
|ṽ(k)|2

〉
=

〈(∫
d2r eik·rv(r)

)
·
(∫

d2r′ e−ik·r′
v(r′)

)〉

=

∫
d2r

∫
d2r′ eik·(r−r′) ⟨v(r) · v(r′)⟩

= L2

∫
d2R eik·R ⟨v(0) · v(R)⟩ .

(B.18)

We assume the correlation function has the form [201]

⟨v(0) · v(R)⟩ = C(|R|) = v20
(R/R0)a

e−R/ξ (B.19)

with a < 2, and thus
〈
|ṽ(k)|2

〉
= 2πL2

∫
dRRJ0(kR)C(R) (B.20)

where J0 is the 0-th Bessel function of the first kind, therefore the energy spectrum

E(k) =
2πk

L2

〈
|ṽ(k)|2

〉
= kv20(2πξ)

2(R0/ξ)
aΓ(2− a) 2F1

(
3− a

2
,
2− a

2
, 1,−(kξ)2

)
(B.21)
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where Γ is the Euler Gamma function and 2F1 is the hypergeometric function. E(k) then has the following
asymptotic expansions

E(k) ∼
k→0

v20(2π)
2ξ(R0/ξ)

aΓ(2− a)(kξ)1, (B.22)

E(k) ∼
k→∞

v20(2π)
2ξ(R0/ξ)

aΓ(2− a)Γ
(
1
2

)
Γ(1)

Γ
(
3−a
2

)
Γ
(
a
2

) (kξ)−(1−a), (B.23)

such that the behaviour C(R) ∼ R−α at small R≪ ξ is mirrored in the decay E(k) ∼ k−(1−a) at large k.
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