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I. WHAT IS ACTIVE MATTER?

I.A. What is equilibrium and how to get out of it?

Macroscopic systems often exhibit some “memory” of their recent history. A stirred cup of tea continues to
swirl within the cup. Cold-worked steel maintains an enhanced hardness imparted by its mechanical treatment.
But memory eventually fades. Turbulences damp out, internal strains yield to plastic flow, concentration
inhomogeneities diffuse to uniformity. Systems tend to subside to very simple states, independent of their
specific history.
In some cases the evolution toward simplicity is rapid; in other cases it can proceed with glacial slowness. But
in all systems there is a tendency to evolve toward states in which the properties are determined by intrinsic
factors and not by previously applied external influences. Such simple terminal states are, by definition, time
independent. They are called equilibrium states.

– [1] (§ 1-5 – Thermodynamic equilibrium)

A working definition for this class is that equilibrium states are steady states which are time-reversal symmetric
(i.e. their dynamics looks identical forward and backward) and in which there is no macroscopic flow (e.g. of matter,
energy). We can then distinguish three general classes of nonequilibrium systems [2].

1. Systems relaxing towards equilibrium (e.g. thermal system adapting to its thermostat, glass [3]).

2. Systems with boundary conditions imposing steady currents (e.g. sheared liquid, metal rod between two ther-
mostats).

3. Active matter.

I.B. Active matter

Active matter is a class of materials composed of active particles. These particles are self-driven units, individually
capable of using available energy to generate forces [4, 5]. These forces constantly dissipate energy thus driving the
system out of equilibrium.

This broad definition applies to a wide array of synthetic and living elements at all scales, from subcellular elements
[6], to self-driven colloids [7], to birds [8] and humans [9]. Due to their continual generation of forces, these elements
escape the rules of equilibrium statistical mechanics, and display a wealth of surprising phenomena which challenge
our conceptions of equilibrium phases and dynamics.

The forces generated by active particles are stochastic1. In this class, we will be interested in understanding how
these microscopic fluctuating forces lead to macroscopic dynamically correlated behaviours. We first need a framework
to deal with such processes, and this framework is given by stochastic differential equations.

II. AN EXAMPLE OF STOCHASTIC DIFFERENTIAL EQUATION: LANGEVIN EQUATION

This section is largely based on [11] (§ 10.1 – The Langevin model).

1 “Stochastic” comes from the Ancient Greek stókhos “aim, guess” and is the property of being well-described by a random probability
distribution [10].
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II.A. Brownian motion

Brownian motion describes the erratic motion of a particle immersed in a fluid bath under the effect of the collisions
it undergoes with the molecules of this fluid. This behaviour is exhibited by colloidal particles (i.e. glass or plastic
beads, typically 1µm in diameter) which are immersed in a fluid with matching density (in order not to sediment).
As a matter of simplicity we will consider the 1-dimensional case.

We may write the Newtonian equation of motion for the position x of this particle

v =
dx

dt
, (1a)

m
dv

dt
= −ζv + F (t), (1b)

where m is its mass, ζ a viscous drag coefficient, and F (t) is a random function – a noise – which represents the
force arising from the collisions with the molecules of the fluid. Given a spherical colloid of radius R then ζ = 6πµR,
with µ the dynamical viscosity of the fluid, according to Stokes’ law. This is the form of the equation introduced by
Langevin [12] – and we thus commonly refer to (1) as the Langevin equation.

This first-order differential equation can be solved as2

v(t) = v(0)e−(ζ/m)t +
1

m

∫ t

0

ds e−(ζ/m)(t−s)F (s), (2)

and assuming v(t → −∞) = 0,

v(t) =
1

m

∫ t

−∞
ds e−(ζ/m)(t−s)F (s). (3)

II.B. Stochastic force emerging from random collisions

Stationary process with zero average The bath is assumed to be at thermodynamic equilibrium, therefore (i) no
instant or direction of time is privileged and (ii) it does not lead to a macroscopic flow. Condition (i) implies that
F (t) is modelled as a stationary stochastic process, i.e. ⟨F (t)⟩ does not depend on time and ⟨F (t)F (t′)⟩ only depends
on the time difference t− t′, and condition (ii) implies that

⟨F (t)⟩ = 0, (4)

so that ⟨v⟩ = 0.

Uncorrelated in time We introduce the autocorrelation function of the random force

g(τ) = ⟨F (t)F (t+ τ)⟩ , (5a)

where condition (i) imposes that g is an even function of τ . There is in principle a characteristic time τc which describes
the decay of g and corresponds to the typical time between two successive collisions with the fluid molecules. We will
assume that τc is small compared to all other characteristic time scales, and write (5a) as

g(τ) = 2ζ2D δ(τ), (5b)

where D is a diffusion constant and δ is the Dirac delta function3. This δ-peaked correlation function defines what is
commonly referred to as a white noise4.

2 This general integral solution (2) of the linear differential equation (1) can be found using Laplace transforms [13] (§ 12.5 – The Laplace
transform – Physical applications, the Cauchy problem).

3 Equations (1) and (5) define what is known as an Ornstein-Uhlenbeck process [14].
4 Wiener–Khinchin theorem [11] (§ 1.10 – The Wiener–Khintchine theorem) states that the power spectral density of a stationary random
process is given by the Fourier transform of its autocorrelation function. Force F has a δ-peaked autocorrelation function g, thus its
Fourier transform is a constant. This flat spectral density defines the white noise by analogy with white light.
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Normally distributed We assume that F (t) is normally distributed. This may be justified using the central limit
theorem: the force derives from the numerous collisions with the fluid molecules, therefore F (t) may be thought as
the superposition of a large number of identically distributed random functions.

Since (1) is a linear differential equation, v(t) is also normally distributed.

Markovian character of v Since F (t) is an uncorrelated white noise, all the realisations of F between times 0 and
t are statistically identical, whatever the values of F (0). Therefore, the knowledge of v(0) is sufficient to characterise
the statistics of v(t) at times t > 0 using (2). This should be contrasted with the case where F has a finite correlation
time: in this case, different values of F (0) lead to statistically different realisations of v(t) at times t > 0.
This defines a Markov process: the knowledge of only the present (t = 0) determines the future (t > 0). More

information about Markov processes can be found in [15] (§ 3.2 – Markov process).

II.C. Fluctuation-dissipation theorem

It is important to note that both the random force F (t) and the viscous drag −ζv emerge from the interactions
with the molecules of the fluid. This common origin is made apparent at equilibrium with fluctuation-dissipation
relations which relate both these terms.

We compute the average kinetic energy from (3) and (5)

〈
v(t)2

〉
=

1

m2

∫ t

−∞
ds

∫ t

−∞
ds′ e−(ζ/m)(2t−s−s′) ⟨F (s)F (s′)⟩

=
1

m2

∫ t

−∞
ds

∫ t

−∞
ds′ 2ζ2De−(ζ/m)(2t−s−s′) δ(s− s′)

=
2ζ2D

m2

∫ t

−∞
ds e−2(ζ/m)(t−s) =

ζD

m
.

(6)

Moreover, according to the equipartition theorem5,

1

2
m
〈
v(t)2

〉
=

1

2
kBT, (8)

where kB is the Boltzmann constant and T is the temperature of the bath. Therefore (6) and (8) lead to the relation

D =
kBT

ζ
, (9)

known as the Einstein relation, which relates the diffusion constant (the fluctuation) and the drag coefficient (the
dissipation). This is the simplest form of what is known as the fluctuation-dissipation theorem. This theorem relates
more broadly the equilibrium fluctuations of the system to its response to external perturbations; a more careful but
more abstract introduction can be found in [17] (§ 8.5 – Fluctuation-dissipation theorem).

III. CONTINUUM DESCRIPTION OF A STOCHASTIC SYSTEM: FOKKER-PLANCK
EQUATION

III.A. Kramers-Moyal expansion

This section is largely based on [11] (§ 11 – Brownian motion: the Fokker-Planck equation). We aim to derive from
the Langevin equation (1) a differential equation for the probability p(v, t) of observing velocity v(t) = v at time t.

5 Consider a system described by some degrees of freedom {x1, . . . , xN} and a Hamiltonian H(x1, . . . , xN ). At equilibrium, the equipar-
tition theorem gives the values of the following averages,〈

xi
∂

∂xj
H

〉
= δijkBT, (7)

where kB is the Boltzmann constant and T is the temperature of the system [16] (§ 6.4 – Equipartition theorem).
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To this effect we write p(v, t+∆t) as a function of p(v, t) using conditional probabilities

p(v, t+∆t) =

∫
dv′ p(v, t+∆t|v′, t) p(v′, t) =

∫
dw p(v, t+∆t|v − w, t) p(v − w, t), (10)

with the idea of then taking the limit of ∆t → 0.

We derive p(v + w, t+∆t|v, t) – a little simpler conceptually than p(v, t+∆t|v − w, t) –, which is the probability
that v(t+∆) = v + w given that v(t) = v, from the Langevin equation. In order to do so, we may first integrate (1)
between times t and t+∆t,

v(t+∆t) = v(t)e−(ζ/m)∆t +
1

m

∫ ∆t

0

ds e−(ζ/m)(∆t−s)F (t+ s), (11)

and write the difference w = v(t+∆t)− v(t),

w = v(t)(e−(ζ/m)∆t − 1) +
1

m

∫ ∆t

0

ds e−(ζ/m)(∆t−s)F (t+ s), (12a)

w2 = v(t)2(e−(ζ/m)∆t − 1)2 +
1

m

∫ ∆t

0

ds (e−(ζ/m)∆t − 1)e−(ζ/m)(∆t−s) v(t)F (t+ s)

+
1

m2

∫ ∆t

0

ds

∫ ∆t

0

ds′e−(ζ/m)(2∆t−s−s′)F (t+ s)F (t+ s′).

(12b)

Given the linearity of (1) and that F (t) is a Gaussian process, it follows that v(t) is a Gaussian process, and using
(12a) that w is normally distributed. This means that p(v + w, t + ∆t|v, t) is uniquely determined by its first two
moments given by the averages ⟨. . .⟩ of (12) at fixed v(t) = v over the different realisations of F (t). While performing
these averages it is noteworthy that

⟨F (t+ s)⟩ = 0, (13)

which is equivalent to (4), that for s > 0

⟨v(t)F (t+ s)⟩ = 0, (14)

which derives from F (t) having zero correlation time, and that

⟨F (t+ s)F (t+ s′)⟩ = 2ζ2D δ(s− s′), (15a)∫ ∆t

0

ds

∫ ∆t

0

ds′ e−(ζ/m)(2∆t−s−s′) ⟨F (t+ s)F (t+ s′)⟩ = 2ζ2D

∫ ∆t

0

ds e−2(ζ/m)(∆t−s)

= mζD(1− e−2(ζ/m)∆t),

(15b)

where (15a) is equivalent to (5a). Collecting all these we get

M1 = ⟨w⟩ = ve−(ζ/m)∆t =
∆t→0

−(ζ/m)∆t v +O(∆t2), (16a)

M2 =
〈
w2
〉
= v2(e−(ζ/m)∆ − 1)2 + (ζ/m)D(1− e−2(ζ/m)∆t) =

∆t→0
2(ζ/m)2D∆t+O(∆t2), (16b)

which do not depend on the value of t but only on the difference of times ∆t, consistently with stationarity. We thus
write the corresponding multivariate normal distribution in d dimensions, at first order in ∆t

p(v + w, t+∆t|v, t) = 1

(2π(M2 −M2
1 ))

d/2
exp

(
−1

2

(w −M1)
2

M2 −M2
1

)
=

∆t→0

1

(4π(ζ/m)2D∆t)d/2
exp

(
−1

2

(w + (ζ/m)∆tv)2

4(ζ/m)2D∆t

)
≡ p̃(w, v,∆t),

(17)

where p̃(w, v,∆t) now designates the probability of an increment w in velocity over time ∆t from value v.
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We may now rewrite (10) using the notation (17) and Taylor-expand the integrand as follows

p(v, t+∆t) =

∫
dw p̃(w, v − w,∆t) p(v − w, t)

=

∫
dw

∞∑
n=0

(−1)n

n!
wn ∂n

∂vn

[
p(w, v,∆t)p(v, t)

]
=

∞∑
n=0

(−1)n

n!

∂n

∂vn

[(∫
dwwnp̃(w, v,∆t)

)
p(v, t)

]

=

∞∑
n=0

(−1)n

n!

∂n

∂vn

[
⟨wn⟩ p(v, t)

]
,

(18)

where ⟨. . .⟩ designates an average with respect to distribution p̃(w, v,∆t) (17). This expansion of p(v, t+∆t) is known
as the Kramers-Moyal expansion. The Fokker-Planck approximation consists in neglecting the terms of order n ≥ 3,
thus with the moments (16),

p(v, t+∆t) = p(v, t) + ∆t
∂

∂v

(
ζ

m
vp(v, t)

)
+∆t

1

2

∂2

∂v2

(
2
ζ2

m2
Dp(v, t)

)
, (19)

which finally leads to the Fokker-Planck equation corresponding to our Langevin equation (1) by taking the limit
∆t → 0,

∂

∂t
p(v, t) =

ζ

m

∂

∂v
vp(v, t) +

ζ2

m2
D

∂2

∂v2
p(v, t). (20)

III.B. General Fokker-Planck equation

A more general demonstration of the Fokker-Planck can be found in [18] (§ 2.2 – Fokker-Planck equations). Consider
a quantity a described by a Langevin-like equation

da

dt
= v(a) + F (t), (21)

where F (t) is Gaussian white noise with zero mean and variance

⟨F (t)⊗ F (t′)⟩ = 2B δ(t− t′), (22)

with B a constant covariance matrix. Under these conditions, the probability distribution p(a, t) satisfies the following
Fokker-Planck equation

∂

∂t
p(a, t) = − ∂

∂a
· (v(a)p(a, t)) + ∂

∂a
·
(
B

∂

∂a
p(a, t)

)
. (23)

III.C. Smoluchowski equation and Boltzmann distribution

Langevin equations are often considered in the overdamped limit, where the inertial term

dv

dt
→ 0, (24)

which amounts to setting m = 0 in (1). This hypothesis is common in describing soft matter systems where dissipation
dominates. It is similar to taking the Stokes limit of the Navier-Stokes equation in fluid dynamics as the Reynolds
number Re → 0.
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We can consider adding an energy potential U(x), such that the stochastic equation of motion now reads

ζ
dx

dt
= −dU

dx
+ F (t). (25)

A special case is a harmonic potential U(x) = (1/2)kx2 which leads to the exact same form as (1) where v is replaced by
x. It is important to note once again that, with correlation function (5) and a time-independent U(x), the knowledge
of x(0) is sufficient to characterise the statistics of x(t) at times t > 0 since all the realisations of F between times 0
and t are statistically identical.

Using (23) and the Einstein relation (9) we find the following Fokker-Planck equation,

∂

∂t
p(x, t) =

1

ζ

∂

∂x

(
dU

dx
p(x, t)

)
+D

∂2

∂x2
p(x, t) (26a)

= − ∂

∂x

(
−1

ζ
p(x, t)

∂

∂x
[kBT log p(x, t) + U ]

)
= − ∂

∂x
J(x) (26b)

which is known as Smoluchowski equation. It is noteworthy that in the case of a free system, i.e. with U = 0, (26a)
is equivalent to the well-known diffusion equation,

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (27)

Equation (26b) highlights that the temporal variations of probabilities p are balanced by the divergence of a flux6.
As the system relaxes to equilibrium, this flux must cancel, as such we find the following solution

p(x, t → ∞) = pex(x) =
1

Z
e
−U(x)

kBT , (29a)

Z =

∫
dx e

−U(x)
kBT , (29b)

where pex(x) is the Boltzmann distribution and Z the partition function which ensures it is normalised.

6 We define the continuity equation of a quantity ρ as
∂

∂t
ρ = −∇ · j + σ, (28)

where is j its flux and σ is a source (or sink) term. This means that the quantity ρ at a given point in space varies over time either
because there is an incoming flux of this quantity (first term) or it is created or annihilated (second term). In the case of σ = 0 it may
be called a conservation equation that shows the balance between the variation in time and the incoming flux. This is the form that
(26) takes in probability space, with the probability p being the conserved quantity and J being its flux.
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IV. PROBLEMS

IV.A. Diffusion of a Brownian particle and Maxwell-Boltzmann distribution

Consider a particle with position x, mass m and drag coefficient ζ, which follow (1) and (5),

mẍ = −ζẋ+ F (t), (30a)

⟨F (t)F (t′)⟩ = 2ζkBT δ(t− t′). (30b)

1. Compute the velocity autocorrelation function ⟨ẋ(t)ẋ(t′)⟩ as a function of kBT , m, t, and t′.

2. Compute the mean-squared displacement
〈
(x(t)− x(0))2

〉
from the integral of the velocity autocorrelation func-

tion.

3. Show that
〈
(x(t)− x(0))2

〉
∼

t→0

〈
ẋ(0)2

〉
t2 and

〈
(x(t)− x(0))2

〉
∼

t→∞
2Dt.

4. Show that the Maxwell-Boltzmann distribution,

p(ẋ) ∝ exp

(
−1

2

mẋ2

kBT

)
, (31)

is a steady-state solution of the Fokker-Planck equation (20) which corresponds to (30).

IV.B. Caldeira-Leggett model and generalised Langevin equation

This problem on the Caldeira-Leggett model is largely based on [11] (§ 10B – Brownian motion in a bath of
oscillators) and [18] (§ 1.6 – Brownian motion in a harmonic oscillator heat bath). This model provides a microscopic
description to conceptualise generalised Langevin equations (35). We will derive the fluctuation-dissipation relation
(36) which applies for stochastic systems described by (35) [11] (§ 10A – The generalized Langevin model).

Consider a particle, described by its position x, at equilibrium with an ensemble of N oscillators, described by their
positions xi. We introduce the Hamiltonian of the system,

H =
1

2
mẋ2 +

N∑
i=1

[
1

2
miẋ

2
i +

1

2
miω

2
i

(
xi −

γi
miω2

i

x

)2
]
, (32)

where m and mi are masses for the particle and the oscillators, ωi are characteristic frequencies, and γi are coupling
constants.

1. Using Hamilton’s equations for the positions, x and xi, and the momenta, mẋ and mẋi, derive the equations of
motion of the particle and the oscillators in the form of differential equations in x(t) and xi(t).

2. Solve the equations of motion for xi(t) and give an expression

xi(t)−
γi

miω2
i

x(t) = . . . (33)

using only time t, initial values x(0), xi(0) and ẋi(0), and the velocities ẋ(s) for times 0 ≤ s ≤ t.

First hint: We recall that the differential equation

f ′′(t) + ω2f(t) = g(t), (34a)
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admits the following solution7

f(t) = f(0) cos(ωt) + f ′(0)
sin(ωt)

ω
+

∫ t

0

ds
sin(ω(t− s))

ω
g(s). (34b)

Second hint: An integration by part in (34b) enables to go from an integral on g(s) to an integral on ġ(s).

3. Show that x satisfies a generalised Langevin equation,

mẍ(t) = −
∫ t

0

ds ζ(t− s) ẋ(s) + F (t), (35)

and give the expressions of ζ(t− s) and F (t) using time t and initial values x(0), xi(0) and ẋi(0).

4. Compute the average ⟨F (t)⟩ and correlations ⟨F (t)F (t′)⟩ of the driving force as functions of t and t′ only. Hint:
averages ⟨...⟩ over time and initial conditions x(0), xi(0) and ẋi(0) can be computed using the equipartition
theorem.

5. Show that, at equilibrium, the generalised drag ζ and the driving noise F in the generalised Langevin equation
(35) satisfy the following form of the fluctuation-dissipation theorem,

⟨F (t)F (t′)⟩ = kBT ζ(t− t′). (36)

IV.C. Active Onstein-Uhlenbeck particles and breakdown of equipartition

Active Onstein-Uhlenbeck particles are a common model of self-propelled particles. The first part of this problem
is largely based on [19] (§ IV – Self-propelled particle in a harmonic potential) and the second part on [20] (§ Normal
mode formulation).

Consider an overdamped particle with position x, driven by a self-propulsion force f and feeling a potential U . We
write its equation of motion,

ζẋ = − ∂

∂x
U + f, (37a)

where ζ is a drag coefficient, and consider that p follows an Ornstein-Uhlenbeck process,

τpḟ = −f +
√

2ζ2v20τp η, (37b)

where v0 is the self-propulsion velocity, τp is the persistence time, and η is a Gaussian white noise with mean ⟨η(t)⟩ = 0
and variance

⟨η(t)η(t′)⟩ = δ(t− t′). (37c)

1. Derive the Fokker-Planck equation followed by p(x, f, t).

2. Consider a harmonic potential, U = 1
2kx

2 with k a spring constant. Show that the following Gaussian distribu-
tion is a steady-state solution of the Fokker-Planck equation,

pss(x, f) ∝ exp(−ax2 − bf2 − cxf), (38)

and give the values of a, b, and c.

3. Derive the marginal steady-state position distribution pss(x). What is the mean energy of the elastic mode〈
1
2kx

2
〉
? At what condition does this distribution describe a system at thermal equilibrium with temperature

T?

7 As mentioned in footnote 2, this can be shown using Laplace transforms.
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4. Consider an ensemble of N active Ornstein-Uhlenbeck particles described by positions x = {x1, . . . , xN}, self-
propulsion forces f = {f1, . . . , fN}, and Gaussian white noises η = {η1, . . . , ηN} which are independent random
variables. We assume that these particles are coupled with linear forces,

− ∂

∂xi
U = −

N∑
j=1

Hijxj , (39a)

Hij =
∂2U

∂xi∂xj
= cst, (39b)

where H is the Hessian matrix.
(a) Argue why H is diagonalisable in a basis {e1, . . . , eN} with em · en = δmn.
(b) Given an eigenvector en of H, associated with eigenvalue κn, show that en ·x, en ·f , and en ·η satisfy (37).
(c) What is the mean energy of each elastic eigenmode

〈
1
2κn(en · x)2

〉
?

(d) At what conditions do these elastic eigenmodes follow equipartition?

9
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V. SOLUTIONS

V.A. Diffusion of a Brownian particle and Maxwell-Boltzmann distribution

1. We consider t′ > t without loss of generality, then

ẋ(t′) = e−(ζ/m)(t′−t)ẋ(t) +
1

m

∫ t′

t

ds e−(ζ/m)(t′−s)F (s), (40)

and we write the correlation function,

⟨ẋ(t)ẋ(t′)⟩ = e−(ζ/m)(t′−t)
〈
ẋ(t)2

〉
+

1

m

∫ t′

t

ds e−(ζ/m)(t′−s) ⟨ẋ(t)F (s)⟩ , (41)

where the second term cancels because F is a white noise thus the present velocity is uncorrelated with the
future values of the force (14), and where the equipartition theorem dictates

〈
ẋ(t)2

〉
= kBT/m. It should be

noted that in the hypothesis t′ < t, the sign in the exponential would be inverted, therefore we write

⟨ẋ(t)ẋ(t′)⟩ = kBT

m
e−(ζ/m)|t′−t|, (42)

for any t and t′.

2. We write the mean-squared displacement in integral form,

〈
(x(t)− x(0))2

〉
=

〈(∫ t

0

ds ẋ(s)

)2
〉

=

∫ t

0

ds

∫ t

0

ds′ ⟨ẋ(s)ẋ(s′)⟩ . (43)

We use (42), and separate the integrals with s < s′ and s > s′,

〈
(x(t)− x(0))2

〉
=

kBT

m

∫ t

0

ds

[∫ s

0

ds′e−(ζ/m)(s−s′) +

∫ t

s

ds′e−(ζ/m)(s′−s)

]
=

kBT

m

m

ζ

∫ t

0

ds
[
1− e−(ζ/m)s + 1− e−(ζ/m)(t−s)

]
=

kBT

m

m

ζ

[
2t− m

ζ

(
1− e−(ζ/m)t + 1− e−(ζ/m)t

)]
= 2D

[
t+

m

ζ

(
e−(ζ/m)t − 1

)]
(44)

where we have used the Einstein relation (9) in the last line.

3. We Taylor-expand the mean-squared displacement (44) at small times,

〈
(x(t)− x(0))2

〉
=

t→0
2D

[
t+

m

ζ

(
1− ζ

m
t+

1

2

ζ2

m2
t2 +O(t3)− 1

)]
∼

t→0

Dζ

m
t2 =

〈
v(0)2

〉
t2, (45)

where the last equality uses the autocorrelation function (42) and the Einstein relation (9), and we take the
limit at large times, 〈

(x(t)− x(0))2
〉

∼
t→∞

2Dt. (46)

4. We have derived the Fokker-Planck equation (20) corresponding to our model (30),

∂

∂t
p(ẋ, t) = − ζ

m

∂

∂ẋ
ẋp(ẋ, t) +

ζ2

m2
D

∂2

∂ẋ2
p(ẋ, t), (47)
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such that the steady state t → ∞ solution verifies

0 =
∂

∂ẋ

(
ẋp(ẋ) +

kBT

m

∂

∂ẋ
p(ẋ)

)
=

∂

∂ẋ

(
p(ẋ)

∂

∂ẋ

[
kBT

m
log p(ẋ) +

1

2
ẋ2

])
, (48)

where we have once again used Einstein relation (9). It is clear from this expression that the Maxwell-Boltzmann

distribution p(ẋ) ∝ exp(− 1
2
mẋ2

kBT ) lays a constant term between square brackets, therefore its derivative cancels
and it is a steady-state solution of the Fokker-Planck equation.

V.B. Caldeira-Leggett model and generalised Langevin equation

1. We write Hamilton’s equations,

ẋ =
1

m

∂H

∂ẋ
, mẍ = −∂H

∂x
=

N∑
i=1

γi

(
xi −

γi
miω2

i

x

)
, (49a)

ẋi =
1

mi

∂H

∂ẋi
, miẍi = −∂H

∂xi
= miω

2
i

(
γi

miω2
i

x− xi

)
. (49b)

2. We rewrite (49b) in the form of (34a),

ẍi + ω2
i xi =

γi
mi

x, (50)

and use the solution (34b),

xi(t) = xi(0) cos(ωit) + ẋi(0)
sin(ωit)

ωi
+

∫ t

0

ds
sin(ωi(t− s))

ωi

γi
mi

x(t). (51)

This expression depends on the positions x(s) for times 0 ≤ s ≤ t. We perform an integration by part to obtain
an expression which depends on the velocities ẋ(s),

xi(t) = xi(0) cos(ωit) + ẋi(0)
sin(ωit)

ωi
+

[
cos(ωi(t− s))

ω2
i

γi
mi

x(s)

]s=t

s=0

−
∫ t

0

ds
cos(ωi(t− s))

ω2
i

γi
mi

ẋ(s), (52)

which we can rewrite to reveal (33),

xi(t)−
γi

miω2
i

x(t) =

(
xi(0)−

γi
miω2

i

x(0)

)
cos(ωit) + ẋi(0)

sin(ωit)

ωi
−
∫ t

0

ds
γi cos(ωi(t− s)

miω2
i

ẋ(s). (53)

3. We combine (49a) and (53),

mẍ = −
∫ t

0

ds

(
N∑
i=1

γ2
i

miω2
i

cos(ωi(t− s))

)
ẋ(s)+

N∑
i=1

γi

((
xi(0)−

γi
miω2

i

x(0)

)
cos(ωit) + ẋi(0)

sin(ωit)

ωi

)
, (54)

and identify

ζ(t− s) =

N∑
i=1

γ2
i

miω2
i

cos(ωi(t− s)), (55a)

F (t) =

N∑
i=1

γi

((
xi(0)−

γi
miω2

i

x(0)

)
cos(ωit) + ẋi(0)

sin(ωit)

ωi

)
. (55b)

4. F (t) is a sum of cosines and sines, therefore its time-average cancels,

⟨F (t)⟩ = 0. (56)
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We write the correlator,

⟨F (t)F (t′)⟩ =

〈
N∑
i=1

γi

((
xi(0)−

γi
miω2

i

x(0)

)
cos(ωit) + ẋi(0)

sin(ωit)

ωi

)

×
N∑
i=1

γi

((
xj(0)−

γj
mjω2

j

x(0)

)
cos(ωjt

′) + ẋi(0)
sin(ωjt

′)

ωj

)〉
,

(57)

where the cross terms i ̸= j involve products of cosines and sines with different frequencies and whose time-
average thus cancels,

⟨F (t)F (t′)⟩ =
N∑
i=1

γ2
i

(〈(
xi(0)−

γi
miω2

i

x(0)

)2
〉
⟨cos(ωit) cos(ωit

′)⟩+
〈
ẋi(0)

2
〉 ⟨sin(ωit) sin(ωit

′)⟩
ω2
i

)
. (58)

We compute the ensemble averages over the initial conditions using the equipartition theorem given the Hamil-
tonian (32), 〈

miẋ
2
i

〉
= kBT, (59a)〈

miω
2
i

(
xi −

γi
miω2

i

x

)2
〉

= kBT, (59b)

which lead to

⟨F (t)F (t′)⟩ =
N∑
i=1

γ2
i

miω2
i

kBT ⟨cos(ωit) cos(ωit
′) + sin(ωit) sin(ωit

′)⟩ =
N∑
i=1

γ2
i

miω2
i

kBT cos(ωi(t− t′)). (60)

5. We identify (36) from (55a) and (60).

V.C. Active Onstein-Uhlenbeck particles and breakdown of equipartition

1. We use (23) and write the Fokker-Planck equation corresponding to the equations of motion (37),

∂

∂t
p(x, f, t) = −1

ζ

∂

∂x

([
− ∂

∂x
U + f

]
p(x, f, t)

)
+

1

τp

∂

∂f
(fp(x, f, t)) +

ζ2v20
τp

∂2

∂f2
p(x, f, t). (61)

2. We take the steady-state limit ∂tp = 0 and insert the Gaussian ansatz ps (38) into the Fokker-Planck equation
(61),

0 = −− 1

ζ

∂

∂x
([−kx+ f ]pss) +

1

τp

∂

∂f
(fpss) +

ζ2v20
τp

∂2

∂f2
pss

=
k

ζ
pss +

(kx− f)

ζ

∂

∂x
pss +

1

τp
pss +

f

τp

∂

∂f
pss +

ζ2v20
τp

∂2

∂f2
pss

= pss

[
k

ζ
+

kx− f

ζ
(−2ax− cf) +

1

τp
+

f

τp
(−2bf − cx) +

ζ2v20
τp

(−2b+ (2bf + cx)2)

]
= pss

[(k

ζ
+

1

τp
− 2ζ2v20

τp
b

)
+

(
−2ak

ζ
+

ζ2v20
τp

c2
)
x2

+

(
1

ζ
c− 2

τp
b+

4ζ2v20
τp

b2
)
f2

+

(
−k

ζ
c+

2

ζ
a− 1

τp
c+

4ζ2v20
τp

bc

)
fx
]
.

(62)
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Our Gaussian ansatz pss (38) thus satisfies our steady-state Fokker-Planck equation (61) if all the terms between
parentheses in the last line of (62) cancel. We assume that all parameters are non-zero ζ, k, τp, v

2
0 ̸= 0, then we

infer

k

ζ
+

1

τp
− 2ζ2v20

τp
b = 0 ⇒ b =

1

2ζ2v20

(
1 +

kτp
ζ

)
, (63a)

c

ζ
− 2

τp
b+

4ζ2v20
τp

b2 = 0 ⇒ c =
2ζ

τp
b
(
1− 2ζ2v20b

)
= − k

ζ2v20

(
1 +

kτp
ζ

)
, (63b)

−2ak

ζ
+

ζ2v20
τp

c2 = 0 ⇒ a =
ζ

2k

ζ2v20
τp

c2 =
k

2ζv20τp

(
1 +

kτp
ζ

)2

, (63c)

where we have used only three out of the four terms; we checked that the last also cancels,

− k

ζ
c+

2

ζ
a− 1

τp
c+

4ζ2v20
τp

bc = −c

(
1

τp

(
1 +

kτp
ζ

)
− 4ζ2v20

τp
b

)
+

2

ζ
a

=
k

ζ2v20

(
1 +

kτp
ζ

)(
1

τp

(
1 +

kτp
ζ

)
− 4ζ2v20

τp

1

2ζ2v20

(
1 +

kτp
ζ

))
+

2

ζ

k

2ζv20τp

(
1 +

kτp
ζ

)2

= 0.

(63d)

3. We define normalisation factors,

Nxf =

∫
dx

∫
df exp(−ax2 − bf2 − cxf), (64a)

Nf =

∫
df exp(−bf2), (64b)

then the marginal distribution is

pss(x) =
1

Nxf

∫
df exp(−ax2 − bf2 − cxf)

=
1

Nxf
exp(−ax2)

∫
df exp

(
−b

(
f +

1

2

c

b
x

)2
)
exp

(
1

4

c2

b
x2

)
=

Nf

Nfx
exp

(
−1

2

(
2a− 1

2

c2

b

)
x2

)
.

(65)

Given the normal distribution (65), we directly read ⟨x⟩ = 0 and the inverse variance

〈
x2
〉−1

= 2a− 1

2

c2

b

=
k

ζv20τp

(
1 +

kτp
ζ

)2

− 1

2

k2

ζ4v4
0

(
1 +

kτp
ζ

)2
1

2ζ2v2
0

(
1 +

kτp
ζ

)
=

k

ζv20τp

(
1 +

kτp
ζ

)(
1

τp

(
1 +

kτp
ζ

)
− k

ζ

)
=

k

ζv20τp

(
1 +

kτp
ζ

)
.

(66)

where we have used the values of the parameters a, b, c (63). We conclude that the mean energy of the elastic
mode is 〈

1

2
kx2

〉
=

1

2

ζv20τp
1 + kτp/ζ

. (67)
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At thermal equilibrium at temperature T the equipartition theorem would hold, which leads to the following
relation

ζv20τp
1 + kτp/ζ

= kBT. (68)

4. (a) We have Hij = ∂2
xixj

U = ∂2
xjxi

U = Hji, therefore H is an N ×N symmetric real matrix, it follows from the

spectral theorem that is diagonalisable in an orthogonal basis. We pick one such basis {e1, . . . , eN} where all
vectors are normalised and define {κ1, . . . , κN} the corresponding eigenvalues.
(b) We derive the equation of motion for en · x,

ζ
∂

∂t
en · x =

N∑
i=1

ζen,iẋi

=

n∑
i=1

en,i

−
n∑

j=1

Hijxj + fi


= −

N∑
j=1

(
N∑
i=1

Hijen,i

)
xj +

N∑
i=1

en,ifi

= −
N∑
i=1

κnen,ixi +

N∑
i=1

en,ifi

= −κn en · x+ en · f ,

(69a)

consistently with (37a), the equation of motion for en · f ,

τp
∂

∂t
en · f =

N∑
i=1

τpen,iḟi = −
∑
i=1

en,ifi +

N∑
i=1

en,i

√
2ζ2v20τp ηi = −en · f +

√
2ζ2v20τp en · η, (69b)

consistently with (37b), and finally the variance of the noise en · η,

⟨(en · η(t))(en · η(t′))⟩ =
N∑
i=1

N∑
j=1

en,ien,j ⟨ηi(t)ηj(t′)⟩ =
N∑
i=1

e2n,iδ(t− t′) = δ(t− t′) (69c)

consistently with (37c), where we have cancelled cross terms i ̸= j due to the independence of white noises ηi
and where the last equality derives from the normalisation of the eigenvectors.
(c) We use an analogy with the previous derivation. Indeed we just showed that en ·x follows the same dynamics
as the previously studied x with the potential U = 1

2κnx
2. Therefore we can directly use (67) to write〈

1

2
κn(en · x)2

〉
=

1

2

ζv20τp
1 + κnτp/ζ

. (70)

(d) We see that the mean energy of the elastic modes depend on the values of κn if τp ̸= 0. Therefore for (70)
to follow equipartition we should either have that all κn are equal or that τp = 0. In the first case, this means
that H is the identity matrix and thus that particles do not interact with each other but are all in their own
harmonic potential. In the second case this means that each particle would perform pure diffusion when they
do not interact. We have actually just shown how the dynamics of an isolated active particle can be described
at equilibrium by defining an effective temperature (68) but that this description fails when the particles are in
interaction. We will come back to this in the next classes.
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