

Yann-Edwin Keta

keta@lorentz.leidenuniv.nl

DRSTP Advanced Topics in Theoretical Physics Spring 2025

Equilibrium systems

Definition (Equilibrium)

Systems tend to subside to very simple states, independent of their specific history. Such simple terminal states are, by definition, time independent. They are called equilibrium states. [Callen (1985)]

Equilibrium systems

Definition (Equilibrium)

Systems tend to subside to very simple states, independent of their specific history. Such simple terminal states are, by definition, time independent. They are called equilibrium states. [Callen (1985)]

When describing equilibrium systems we will focus on two properties,

- time-reversal symmetry (forward and backward dynamics are identical),
- 2 absence of macroscopic flow (of matter or energy).

Equilibrium systems

Definition (Equilibrium)

Systems tend to subside to very simple states, independent of their specific history. Such simple terminal states are, by definition, time independent. They are called equilibrium states. [Callen (1985)]

When describing equilibrium systems we will focus on two properties,

- time-reversal symmetry (forward and backward dynamics are identical),
- absence of macroscopic flow (of matter or energy).

"At equilibrium" does not mean "arrested": there are equilibrium fluctuations!

Three general classes of non-equilibrium systems [Cates, Tailleur, Annu. Rev. Condens. Matter Phys. (2015)].

Three general classes of non-equilibrium systems [Cates, Tailleur, Annu. Rev. Condens. Matter Phys. (2015)].

• Systems relaxing towards equilibrium.

Example

Thermal system adapting to its thermostat, glasses.

Three general classes of non-equilibrium systems [Cates, Tailleur, Annu. Rev. Condens. Matter Phys. (2015)].

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.

Example

Sheared liquid, metal rod between two thermostats.

Three general classes of non-equilibrium systems [Cates, Tailleur, Annu. Rev. Condens. Matter Phys. (2015)].

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.
- Active matter.

Definition (Active matter)

Definition (Active matter)

Definition (Active matter)

Definition (Active matter)

System composed of self-driven units, active particles, each capable of converting stored or ambient free energy into systematic movement [Marchetti et al., Rev. Mod. Phys. (2013)].

hinders motion

Definition (Active matter)

THE IMPORTANT THING IS TO MAKE IT LOOK LIKE WE HAVEN'T SPENT MONTHS REHEARSING IT.

[Berger (2022)]

[Guillamat (2020)] [Stern, Shvartsman, Wieschaus, Curr. Biol. (2022)]

[Rabani, Ariel, Be'er, PLoS ONE (2013)]

Competition between crowding effects and particle-level active forcing, which may result in collective motion on larger scales.

Sanchez et al., Nature (2012)

[Bricard et al., Nature (2013)]

```
BBC Earth (Feb. 2017). Amazing Fish Form Giant Ball to Scare Predators | Blue Planet | BBC Earth. YouTube. URL: https://www.youtube.com/watch?v=15B80N9dre4.
```

Berger, J. (2022). URL: https://www.joeberger.co.uk/store/p/murmuration.

Bricard, A., J.-B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo (Nov. 2013). "Emergence of Macroscopic Directed Motion in Populations of Motile Colloids". In: Nature 503,7474, pp. 95–98. ISSN: 0028-0836, 1476-4687.

Callen, H. B. (Sept. 1985). Thermodynamics and an Introduction to Thermostatistics. 2 edition. New York: Wiley. ISBN: 978-0-471-86256-7.

Cates, M. E., J. Tailleur (Mar. 2015). "Motility-Induced Phase Separation". In: Annual Review of Condensed Matter Physics 6.1, pp. 219-244. ISSN: 1947-5454, 1947-5462.

Guillamat, P. (Mar. 2020). Cellular turbulent swirl - MDCK flows. YouTube. URL: https://www.youtube.com/watch?v=0DY0UV50TRY.

Marchetti, M. C., J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, R. A. Simha (July 2013). "Hydrodynamics of Soft Active Matter". In: Reviews of Modern Physics 85.3, pp. 1143-1189. ISSN: 0034-6861, 1539-0756.

Patel, L. (2021). Sheel Timelapse, URL:

https://www.bravozuluaerials.com/copy-of-construction?pgid=liepp2m9-ad6d559e-e387-4bf3-b310-42d8e9c7f00a.

Rabani, A., G. Ariel, A. Be'er (Dec. 2013). "Collective Motion of Spherical Bacteria". In: PLoS ONE 8.12. Ed. by M. S. Kellermayer, e83760. IESN: 1932-6203. Sanchez, T., D. T. N. Chen, S. J. DeCamp, M. Heymann, Z. Dogic (Nov. 2012). "Spontaneous Motion in Hierarchically Assembled Active Matter". In: Nature 4017426. pp. 431–441. IESN: 028-03816. 1478-6451.

Stern, T., S. Y. Shvartsman, E. F. Wieschaus (Apr. 2022). "Deconstructing Gastrulation at Single-Cell Resolution". In: Current Biology 32.8, 1861–1868.e7. ISSN: 09609822.

Winter, D. (2010). URL: https://www.youtube.com/watch?v=eakKfY5aHmY.