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I. SPECTRAL ANALYSIS OF STOCHASTIC PROCESSES

I.A. Correlation function and power spectrum

Considering a linear stochastic differential equation of the following form,

∞∑
n=0

an
∂nx(t)

∂tn
= f(t), (1)

where f(t) is a Gaussian stochastic process. Harmonic analysis of the stochastic process x(t) consists, in its stationary
state, in the study of its Fourier transform

x̃(ω) =

∫
R
dt e−iωt x(t), (2a)

x(t) =
1

2π

∫
R
dω eiωt x̃(ω). (2b)

This analysis comes in handy because (1) may be rewritten in Fourier space,

x̃(ω)

∞∑
n=0

an (iω)
n = f̃(ω), (3)

which is now a polynomial equation in ω, with f̃(ω) the Fourier transform of f and which is, by linearity, also a
Gaussian stochastic process. This formulation is relevant to compute the autocorrelation function of x(t),

⟨x(t)x(t′)⟩ = ⟨x(t)x(t′)∗⟩ = 1

(2π)2

∫
R
dω eiωt

∫
R
dω′ e−iω′t′ ⟨x̃(ω)x̃(ω′)∗⟩

=
1

(2π)2

∫
R
dω eiω(t−t′)

∫
R
dω′ ei(ω−ω′)t′ ⟨x̃(ω)x̃(ω′)∗⟩ ,

(4)

where the first equality is the assumption that x(t) is real-valued. This relation between the correlation function
⟨x(t)x(t′)⟩ and the power spectrum ⟨x̃(ω)x̃(ω)∗⟩ is a form of the Wiener–Khintchine theorem [1] (§ 1.10 – The
Wiener–Khintchine theorem).

I.B. Example: autocorrelation of the Ornstein-Uhlenbeck process

Consider an Ornstein-Uhlenbeck process x(t) described by the following stochastic differential equation,

τ
∂x(t)

∂t
+ x(t) =

√
2τ η(t), (5)

where η(t) is a Gaussian white noise with mean ⟨η(t)⟩ = 0 and variance

⟨η(t)η(t′)⟩ = δ(t− t′), (6)

and where we will consider t as the time.
We compute the power spectrum of the stochastic term,

⟨η̃(ω)η̃(ω′)∗⟩ =
∫
R
dt

∫
R
dt′ e−i(ωt−ω′t′) ⟨η(t)η(t′)⟩ =

∫
R
dt e−i(ω−ω′)t = 2π δ(ω − ω′), (7)
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where the last equality is the definition of the Dirac δ function, and write (5) in Fourier space,

iωτx̃(ω) + x̃(ω) =
√
2τ η(t), (8)

such that the power spectrum of x(t) can be written as

⟨x̃(ω)x̃(ω′)∗⟩ = ⟨η̃(ω)η̃(ω′)∗⟩
(iωτ + 1)(−iω′τ + 1)

=
4πτ δ(ω − ω′)

1 + ω2τ2
, (9)

where we have used ω = ω′ in the last equality for ease of computation and justified by the presence of δ(ω−ω′). We
finally compute the autocorrelation function of x(t) using (4),

⟨x(t)x(t′)⟩ = 1

(2π)2

∫
R
dω eiω(t−t′)

∫
R
dω′ ei(ω−ω′)t′ 4πτ δ(ω − ω′)

1 + ω2τ2
=

1

2π

∫
R
dω eiω(t−t′) 2τ

1 + ω2τ2
= e−|t−t′|/τ , (10)

where the last Fourier relation, between the exponential function

t 7→ e−[t|/τ (11a)

and the Lorentzian function

ω 7→ 2τ/(1 + ω2τ2), (11b)

is a useful general result.1 It is noteworthy that for ωτ ≫ 1, i.e. for time scales 1/ω much smaller than τ , then
1/(1 + ω2τ2) ∼ 1/(ω2τ2) ≪ 1, therefore fluctuations are damped. On the contrary for ωτ ≪ 1, i.e. for time scales
1/ω much larger than τ , then 1/(1 + ω2τ2) ∼ 1, therefore fluctuations are the largest. This highlights that τ is the
characteristic time scale of variations of x(t), which loses its autocorrelation at times t ≫ τ .

I.C. Example: velocity fluctuations in a chain of active Ornstein-Uhlenbeck particles

This section is an adaptation of some of the derivations of [2, 3] to the case of discrete one-dimensional active
Ornstein-Uhlenbeck particles (AOUPs). We consider an ensemble of N AOUPs on a periodic ring, with positions

ri = r0i + ui, (13a)

r0i = iσ, (13b)

ri+N = ri, (13c)

where σ is an effective diameter, and we consider the following overdamped equation of motion, where each particle
interacts harmonically with its neighbours,

ζṙi = −k(ri − ri−1 − σ) + k(ri+1 − ri − σ) + λi, (14a)

or equivalently using the displacements ui from the reference positions r0i ,

ζu̇i = −k(2ui − ui−1 − ui+1) + λi, (14b)

where ζ is a drag coefficient, k is a spring constant, and the λi are fluctuation-inducing terms. We choose the λi to
follow Ornstein-Uhlenbeck processes,

τpλ̇i = −λi +
√

2ζ2v20τpηi, (15)

where the ηi(t) are Gaussian white noises with means ⟨ηi(t)⟩ = 0 and variances

⟨ηi(t)ηj(t′)⟩ = δij δ(t− t′). (16)

1 It is easier to compute the direct Fourier transform,∫
R
dt e−iωτ e−|t|/τ =

∫ 0

−∞
dt e(−iω+1/τ)t +

∫ ∞

0
dt e(−iω−1/τ)t =

1

−iω + 1/τ
−

1

−iω − 1/τ
=

2τ

1 + ω2τ2
. (12)
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We identify equations (5) and (15) and use the result (10) to compute the autocorrelation function of the ηi,

⟨λi(t)λj(t
′)⟩ = ζ2v20 δij e

−|t−t′|/τp , (17)

where we identify v0 to a self-propulsion velocity and τp to a persistence time. Comparing (14) and (17) we see
that fluctuations are induced by coloured (time-correlated) noises λi and that dissipation is provided by a white
(instantaneous) drag −ζṙi. This system thus breaks the second fluctuation-dissipation relation introduced in the
previous lecture2: the energy provided by fluctuations is not dissipated at the same rate, therefore the system is
driven out of thermodynamic equilibrium. Since energy is provided to individual particles via the terms λi, the
system is active.

AOUPs are a model of self-propelled particles3: the active force λi tends to “push” particle i in a given direction
for a time of order τp. This model has been used to characterise crawling MDCK cells [4] or colloidal particles in a
bath of persistently moving bacteria [5].

There are spatial and temporal dimensions to (14) and we thus need to consider fluctuations in both space and
time. We will in particular be interested in the spatial fluctuations of the velocities vi = u̇i. Since this is a discrete
and periodic system, we introduce the ensemble of wavenumbers

qn =
2π

Nσ
n, (20a)

with n ∈ [[0, N − 1]], and the discrete Fourier transform

ũqn(t) =

N∑
i=1

e−iqnr
0
i ui(t), (20b)

ui(t) =
1

N

N−1∑
n=0

eiqnr
0
i ũqn(t), (20c)

with the following orthogonality relation

N∑
i=1

ei(qn−qm)r0i = N δqn,qm = N δm,n. (20d)

We introduce the continuous-time Fourier transform of these discrete-space Fourier transform,

Ũqn(ω) =

∫
R
dt e−iωt ũqn(t), (21a)

ũqn(t) =
1

2π

∫
R
dω eiωt Ũqn(ω). (21b)

We can then write (14) in Fourier space,4

iωζŨqn(ω) = −kŨqn(ω)
(
2− eiqnσ − e−iqnσ

)
+ Λ̃qn(ω) = −2kŨqn(ω)(1− cos(qnσ)) + Λ̃qn(ω). (23)

With Ṽqn(ω) = iωŨqn(ω) the Fourier transform of the velocity, we compute its spectrum

〈
Ṽqn(ω)Ṽ

∗
qm(ω′)

〉
=

ωω′
〈
Λ̃qn(ω)Λ̃

∗
qm(ω′)

〉
[iωζ + 2k(1− cos(qnσ))] [−iω′ζ + 2k(1− cos(qmσ))]

, (24)

2 We can rewrite (14) as a generalised Langevin equation,∫ t

0
ds ζ(t− s) ṙ(s) = −

∂

∂r
U + F (t), (18)

where ζ(t − t′) = ζ δ(t − t′) and ⟨F (t)F (t′)⟩ = ζ2v20e
−|t−t′|/τp according to (17). At thermodynamic equilibrium, the fluctuation-

dissipation theorem would impose 〈
F (t) · F (t′)

〉
= kBT ζ(t− t′), (19)

which would imply here v20τ = kBT/ζ = D (where the second equality is the Einstein relation) and τp → 0.
3 Active Brownian particles (see (43) and (47)) are also a form of self-propelled particles.
4 We used

N∑
i=1

e−iqnr0i ui+j(t) =

N∑
i=1

eqnjσ e−iqn(r0i +jσ) ui+j(t) = eqnjσ
N∑
i=1

e−iqnr0i+j ui+j(t) = eqnjσ ũqn (t), (22)

which itself uses (13) and periodic boundary conditions, to derive (23).
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and where the spectrum of the driving noise is〈
Λ̃∗
qn(ω)Λ̃

∗
qm(ω′)

〉
=

∫
R
dt e−iωt

∫
R
dt′ eiω

′t′
N∑
i=1

e−iqnr
0
i

N∑
j=1

eiqmr0j ⟨λi(t)λj(t
′)⟩

=

∫
R
dt e−iωt

∫
R
dt′ eiω

′t′ ζ2v20 e
−|t−t′|/τp

N∑
i=1

e−i(qn−qm)r0i

=
4πτpζ

2v20 δ(ω − ω′)N δqn,qm
1 + ω2τ2p

,

(25)

where we have used (17) between the first and the second lines, and (9) and (20d) between the second and third lines.
We inject (25) in (24), 〈

Ṽqn(ω)Ṽqm(ω′)
〉
=

4πτpζ
2v20 ω

2 δ(ω − ω′)N δqn,qm
[ω2ζ2 + 4k2(1− cos(qmσ))2]

[
1 + ω2τ2p

] , (26)

where we have used ω = ω′ and qn = qm due to the presence of δ(ω − ω′) and δqn,qm . In order to evaluate the
equal-time spatial fluctuations of the velocities, we need to take the inverse Fourier transform in time of (26). We will
first evaluate this inverse Fourier transform with simpler notations and then identify the terms in (26). We compute

1

(2π)2

∫
R
dω

∫
R
dω′ ei(ω−ω′)t ω2 δ(ω − ω′)

[a2 + ω2b2] [c2 + ω2d2]
=

1

(2π)2

∫
R
dω

1

d2/c2 − b2/a2

[
1/c2

a2 + ω2b2
− 1/a2

c2 + ω2d2

]
=

1

(2π)2

∫
R
dω

[
a2

a2 + ω2b2
− c2

c2 + ω2d2

]
1

a2d2 − b2c2

=
1

(2π)2
π

[
a2

ab
− c2

cd

]
1

a2d2 − b2c2

=
1

4π

[
ad

bd
− bc

bd

]
1

a2d2 − b2c2

=
1

4π bd(ad+ bc)
,

(27a)

where we have used the following identity ∫
R
dω

1

a2 + ω2b2
=

π

ab
, (27b)

and finally identify (27a) and the inverse Fourier transform in time of (26)

⟨ṽqn(ω)ṽqm(ω′)∗⟩ = 1

(2π)2

∫
R
dω

∫
R
dω′ ei(ω−ω′)t

〈
Ṽqn(ω)Ṽqm(ω′)

〉
=

4πτpζ
2v20Nδqn,qm

4πζτp [ζ + 2kτp(1− cos(qnσ))]

=
v20 N δqn,qm

1 + 2
kτp
ζ (1− cos(qnσ))

.

(28)

We introduce the following length scale,

ξ = σ
√
kτp/ζ, (29)

such that in the limit qnσ ≪ 1 we can write,

⟨ṽqn(ω)ṽqm(ω′)∗⟩ =
qnσ≪1

v20 N δqn,qm
1 + q2nξ

2
. (30)

Therefore on length scales 1/qn larger than particle-particle distance σ, the fluctuation spectrum of the velocities is a
Lorentzian (11b) with a typical lengthscale ξ. We conclude that velocities in the system are correlated over a length
scale ξ which grows with the persistence time τp of the driving forces: correlations in time of the driving lead to
correlations in space of the dynamics. This should be contrasted with systems at thermodynamic equilibrium which
are described by the Maxwell-Boltzmann distribution in which positions and velocities are indenpendent and are thus
devoid of velocity correlations.
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II. INTEGRATION OF STOCHASTIC PROCESSES

II.A. Deterministic differential equations: Euler method

Given an ordinary first-order differential equation,

∂y(t)

∂t
= f(y(t), t), (31)

we can solve it numerically using a Taylor-expansion of the source function f . We write

f(y(t), t) = f(y(0), 0) +

∞∑
n=1

1

n!

∂nf(y(t), t)

∂y(t)n

∣∣∣∣
y(t)=y(0)

(y(t)− y(0))n +

∞∑
n=1

1

n!

∂nf(y(t), t)

∂tn

∣∣∣∣
t=0

tn, (32a)

y(t)− y(0) =

∞∑
n=1

1

n!

∂ny(t)

∂tn

∣∣∣∣
t=0

tn =

∞∑
n=1

1

n!

∂n−1f(y(t), t)

∂tn−1

∣∣∣∣
t=0

tn, (32b)

and considering t = o(1) we integrate (31),

y(t) = y(0) +

∫ t

0

ds
dy(t)

dt

∣∣∣∣
t=s

= y(0) +

∫ t

0

ds [f(y(0), 0) +O(s)] = y(0) + f(y(0), 0)t+O(t2), (33)

which outlines the Euler method. Using a discrete ensemble of coordinates t we may use the following integration
method with a step ∆t,

t0, . . . , tn, ti+1 − ti = ∆t, (34a)

y(ti) ≈ yi = yi−1 + f(yi−1, ti−1)∆t. (34b)

which makes an error of order ∆t2 at each step according to (33). We may reduce this error by decreasing ∆t or using
methods which use more derivatives of f such as Runge-Kutta methods [6] (§ 17 – Integration of ordinary differential
equations). It is also noteworthy that the error increases with the first derivative of f , thus larger values of the latter
should be dealt with smaller values of the step ∆t. Both decreasing the step ∆t or increasing the error order in
∆t of the integration method increase computational time to solve a differential equation on a given length interval,
therefore these should be chosen wisely.

II.B. Stochastic differential equations: Euler-Maruyama method

This section is largely based on [7]. We consider the integration of stochastic differential equation by adding an
additional stochastic term to (31),

dy(t)

dt
= f(y(t), t) + g(y(t), t)η(t), (35)

where g is a deterministic function, and η(t) is a Gaussian white noise with mean ⟨η(t)⟩ = 0 and variance

⟨η(t)η(t′)⟩ = δ(t− t′). (36)

With the same procedure as (32), we Taylor-expand our stochastic term as

g(y(t), t)η(t) =

∞∑
n=0

gn t
n η(t), (37)

where g0 = g(y(0), 0) and the higher-order terms depend on the derivatives of g with respect to y(t) and t. We solve
(35) with

y(t) = y(0) + f(y(0), 0)t+O(t2) +

∞∑
n=0

∫ t

0

ds gn t
n η(s), (38)

5
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where the first three terms on the right-hand side derive from (33), and the last term is a linear combination of
random Gaussian variables and is thus also a random Gaussian variable. We single out the following variables,

Gn =

∫ t

0

ds gn t
n η(s), (39)

which are also Gaussian and are thus uniquely determined by their mean and variance,

⟨Gn⟩ =
〈∫ t

0

ds gn t
n η(s)

〉
= 0, (40a)

〈
G2

n

〉
=

〈(∫ t

0

ds gn t
n η(s)

)2
〉

= g2n

∫ t

0

ds

∫ t

0

ds′ t2n ⟨η(s)η(s′)⟩ = g2n

∫ t

0

ds t2n =
1

2n+ 1
g2n t

2n+1, (40b)

and thus write, considering t = o(1),

y(t) = y(0) + f(y(0), 0)t+G0 +O(t3/2), (41)

where ⟨G0⟩ = 0 and
〈
G2

0

〉
= g20 t = g(y(0), 0)2 t, which outlines the Euler-Maruyama method. Using a discrete

ensemble of coordinates t we may use the following integration method,

t0, . . . , tn with ti+1 − ti = ∆t, (42a)

y(0) = y0 and y(ti) ≈ yi = yi−1 + f(yi−1, ti−1)∆t+ g(yi−1, ti−1)
√
∆t λi−1 +O(∆t3/2) (42b)

where the λi are random numbers taken from a Gaussian distribution with zero mean and unit variance, and where
λi and λj are independent for i ̸= j, such that the last term in (42b) has the same statistics as G0 (39).
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III. PROBLEMS

III.A. Mean squared displacement of an isolated active Brownian particle

We consider an isolated active Brownian particle (ABP) [8], with position r and orientation θ, which follows the
following overdamped equation of motion

v = ṙ = v0

(
cos θ
sin θ

)
, (43a)

θ̇ =
√

2/τp η, (43b)

where v0 is a self-propulsion velocity, τp is a persistence time, and η is Gaussian white noise with mean ⟨η(t)⟩ = 0
and variance ⟨η(t)η(t′)⟩ = δ(t− t′).

1. Show that

⟨v(t) · v(t′)⟩ = v20 Re
(〈

ei(θ(t)−θ(t′))
〉)

(44)

and 〈
(θ(t)− θ(t′))2

〉
= 2|t− t′|/τ. (45)

2. Considering a random Gaussian variable X, with mean ⟨X⟩ = µ and variance
〈
(X − ⟨X⟩)2

〉
= σ2, its charac-

teristic function satisfies [9] 〈
eizX

〉
= eiµz−σ2z2/2. (46)

Using this relation, compute the velocity autocorrelation function ⟨v(t) · v(t′)⟩ as a function of v0 and τp.

3. Compute the mean squared displacement
〈
|r(t)− r(0)|2

〉
.

4. Use the script demoABP2D.py (or write your own!) to simulate trajectories of an ABP and check its mean
squared displacement.

III.B. Velocity fluctuations in a chain of active Ornstein-Uhlenbeck particles

Use the script quickAOUP1D.py which integrates (14) to check the velocity spectrum
〈
|ṽqn(ω)|2

〉
(30).

III.C. Density fluctuations in two-dimensional active Brownian particles

Consider an ensemble of N active Brownian particles (ABPs), interacting through a repulsive harmonic potential,
which follow the following overdamped equation of motion

ζṙi = − ∂U

∂ri
+ v0

(
cos θi
sin θi

)
, (47a)

U =
∑
i ̸=j

1

2
k(σ − |rj − ri|)2 Θ(σ − |rj − ri|), (47b)

θ̇i =
√
2/τp ηi, (47c)

where ri and θi are their positions and orientations, ζ their drag coefficient, v0 and τp their self-propulsion velocity
and persistence time, ηi are Gaussian white noises with mean ⟨ηi(t)⟩ = 0 and variance ⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′), σ
their diameter, k is a spring constant, and Θ is the Heaviside function.5

Using the script quickABP2D.py, observe how the behaviour of the system changes as you increase the persistence
time τp. In particular, pay attention to density fluctuations at large τp.

5 We define the Heaviside function as Θ(x < 0) = 0 and Θ(x ≥ 0) = 1.
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IV. SOLUTIONS

IV.A. Mean squared displacement of an isolated active Brownian particle

1. We compute

⟨v(t) · v(t′)⟩ = v20 ⟨cos(θ(t)) cos(θ(t′)) + sin(θ(t)) sin(θ(t′))⟩
= v20 ⟨cos(θ(t)− θ(t′))⟩

= v20 Re
(〈

ei(θ(t)−θ(t′))
〉)

,

(48)

consistently with (44), and 〈
(θ(t)− θ(t′))2

〉
=

〈(∫ t

t′
ds θ̇(s)

)2
〉

=

∫ t

t′
ds

∫ t

t′
ds′

〈
θ̇(s)θ̇(s′)

〉
= 2/τ

∫ t

t′
ds

∫ t

t′
ds′ ⟨η(s)η(s′)⟩

= 2/τ

∫ t

t′
ds sign(t− t′)

= 2|t− t′|/τ,

(49)

where we have introduced sign(t − t′) to take into account the direction of the integration6, and consistently
with (45).

2. We first note that

⟨θ(t)− θ(t′)⟩ =
〈∫ t

t′
ds θ̇(s)

〉
=

√
2/τ

∫ t

t′
ds ⟨η(s)⟩ = 0, (51)

thus with µ = 0 and σ2 = 2|t− t′|/τ (49) we use (46) and (48) to write

⟨v(t) · v(t′)⟩ = v20 e
− 1

2 2|t−t′|/τp = v20 e
−|t−t′|/τp . (52)

3. It is noteworthy that the velocity autocorrelations of the overdamped (52) have the same functional form as the
velocity autocorrelation of a diffusing inertial Brownian particle studied in the previous lecture. We follow the
same route and write,〈

|r(t)− r(0)|2
〉
=

〈(∫ t

0

dsv(s)

)2
〉

=

∫ t

0

ds

∫ t

0

ds′ ⟨v(s) · v(s′)⟩

= v20

∫ t

0

ds

∫ t

0

ds′ e−|s−s′|/τp

= v20

∫ t

0

ds

∫ t

0

[∫ s

0

ds′ e−(s−s′)/τp +

∫ t

s

ds′ e−(s′−s)/τp

]
= v20

∫ t

0

ds τp

[
1− e−s/τp − (e−(t−s)/τp − 1)

]
= v20τp

[
2t− τp

(
1− e−t/τp + 1− e−t/τp

)]
= 2v20τp

[
t+ τp(e

−t/τp − 1)
]
,

(53)

where we have used (52) between the first and second lines.

6 We define the sign function,

sign(t− t′) =


−1 if t < t′,

0 if t = t′,

1 if t > t′.

(50)
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