Active matter – Week 4: Large deviation theory DRSTP Advanced Topics in Theoretical Physics (Spring 2025)

Yann-Edwin Keta keta@lorentz.leidenuniv.nl

Large deviation theory and its application to (nonequilibrium) statistical physics are very well introduced in reviews by Hugo Touchette [1, 2].

I. STATISTICS OF AVERAGES

I.A. Large deviation principle

Consider a sequence X_1, \ldots, X_N of independent and identically distributed random variables. We denote

$$\langle X_i \rangle = \mu, \tag{1a}$$

$$\langle (X_i - \mu)^2 \rangle = \sigma^2,$$
 (1b)

their mean and variance. We introduce the sample average

$$R_N = \frac{1}{N} \sum_{i=1}^{N} X_i,$$
 (2)

which is itself a random variable. We can quantify the statistics of R_N at different levels in the $N \to \infty$ limit. First, the law of large numbers indicates that X_N converges almost certainly to the expected value μ ,

$$\operatorname{Prob}\left(\lim_{N\to\infty} R_n = \mu\right) = 1. \tag{3}$$

Second, the central limit theorem tells us that X_N converges in distribution to a normal distribution of mean μ and variance σ^2/N ,

$$\operatorname{Prob}(R_N) \underset{N \to \infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right).$$
 (4)

Both of these results give us information about the statistics of R_N close to the mean μ . Third and lastly, the *large deviation principle* characterises the statistics of R_N away from its mean¹. R_N is said to satisfy a large deviation principle if the following limit exists,

$$\lim_{N \to \infty} \frac{1}{N} \log \operatorname{Prob}(R_N = r) = -I(r), \tag{5}$$

where I is called the rate function which characterises the exponential decay of probabilities of R_N away from its mean μ . We denote the asymptotic convergence of probability of R_N as

$$\operatorname{Prob}(R_N = r) \simeq \exp(-N I(r)). \tag{6}$$

We introduce the scaled cumulant generating function

$$\psi(s) = \lim_{N \to \infty} \frac{1}{N} \log \langle \exp(sNR_N) \rangle. \tag{7}$$

The Gärtner-Ellis theorem states that if ψ exists and is differentiable, then R_N satisfies a large deviation principle and the rate function is given by

$$I(r) = \sup_{s} \{ sr - \psi(s) \}, \tag{8a}$$

¹ Realisations of R_N away from μ in the limit $N \to \infty$ are characterised as rare.

and conversely

$$\psi(s) = \sup_{r} \{ sr - I(r) \}, \tag{8b}$$

such that the rate function I and the scaled cumulant generating function ψ are related by Legendre-Fenchel transforms.

I.B. Properties of the rate function and the scaled cumulant generating function

It follows from (7) that

$$\psi(0) = 0, \tag{9a}$$

and the derivatives of ψ at s=0 are linked to the asymptotic mean

$$\psi'(0) = \lim_{N \to \infty} \frac{1}{N} \left. \frac{\langle NR_N \exp(sNR_N) \rangle}{\langle \exp(sNR_N) \rangle} \right|_{s=0} = \lim_{N \to \infty} \langle R_N \rangle = \mu$$
 (9b)

and variance

$$\psi''(0) = \lim_{N \to \infty} \frac{1}{N} \frac{\langle (NR_N)^2 \exp(sNR_N) \rangle \langle \exp(sNR_N) \rangle - \langle NR_N \exp(sNR_N) \rangle \langle NR_N \exp(sNR_N) \rangle}{\langle \exp(sNR_N) \rangle^2}$$

$$= \lim_{N \to \infty} N \left(\langle R_N^2 \rangle - \langle R_N \rangle^2 \right)$$

$$= \sigma^2$$
(9c)

of the sample average R_N . Moreover it follows from (9a)

$$\psi(0) = \sup_{r} \{-I(r)\} = \inf_{r} I(r) = 0, \tag{10}$$

thus the rate function I is a positive function,

$$I(r) > 0. (11)$$

We denote s(r) the value which maximises (8a), thus

$$I(r) = s(r)r - \psi(s(r)). \tag{12}$$

Since this is a maximum this implies that

$$\left. \frac{\partial}{\partial s} (sr - \psi(s)) \right|_{s=s(r)} = 0 \Rightarrow \psi'(s(r)) = r. \tag{13}$$

It is possible to show that rate functions I and scaled cumulant generating function ψ obtained from the Gärtner-Ellis theorem are strictly convex by property of the Legendre-Fenchel transform [1], and that their curvatures are related by

$$I''(r) = \frac{1}{\psi''(s(r))}. (14)$$

Their convexity implies that there is an unique s(r) which satisfies (13) and in particular, considering (9b) and (12), this indicates that

$$s(\mu) = 0, (15)$$

$$I(\mu) = 0, (16)$$

with the latter being the global minimum of I thus

$$I'(\mu) = 0. \tag{17}$$

We note that (16) implies from (6) that

$$\operatorname{Prob}(R_N = \mu) \times 1,\tag{18}$$

which is equivalent to the law of large numbers (3), and moreover, using (14), we obtain

$$I''(\mu) = \frac{1}{\psi''(s(\mu))} = \frac{1}{\psi''(0)} = \frac{1}{\sigma^2},\tag{19}$$

thus with a Taylor expansion of I close to μ ,

$$I(r) = I(\mu) + I'(\mu)(r - \mu) + \frac{1}{2}I''(\mu)(r - \mu)^2,$$
(20)

and again from (6),

$$\operatorname{Prob}(R_n = r) \approx \exp\left(-\frac{(r-\mu)^2}{2(\sigma^2/N)}\right),\tag{21}$$

which is equivalent to the central limit theorem (4).

II. LARGE DEVIATION THEORY AND STATISTICAL MECHANICS

II.A. Analogy with equilibrium statistical mechanics

Consider a system of N particles and E_N the mean energy per particle. At thermal equilibrium, the distribution of microstates ω only depends on their energy $NE_N(\omega)$ and is given by the Boltzmann distribution

$$\operatorname{Prob}_{\beta}(\omega) = \frac{e^{-\beta N E_N(\omega)}}{Z(\beta)},\tag{22}$$

where $\beta = 1/(k_B T)$, with β the Boltzmann constant and T the temperature, and where

$$Z(\beta) = \sum_{\omega} e^{-\beta N E_N(\omega)} \tag{23}$$

is the partition function. It is noteworthy that the Boltzmann weights for the mean energy per particle (22) feature a similar exponential form as sample averages following a large deviation principle (6), which is the basis of our analogy. We can define the scaled cumulant generating function of the mean energy E_N

$$\psi_{\beta}(\Delta\beta) = \lim_{N \to \infty} \frac{1}{N} \log \sum_{\omega} e^{-\Delta\beta N E_{N}(\omega)} \operatorname{Prob}_{\beta}(\omega)$$

$$= \lim_{N \to \infty} \frac{1}{N} \log \frac{Z(\beta + \Delta\beta)}{Z(\beta)}$$

$$= \beta F(\beta) - (\beta + \Delta\beta) F(\beta + \Delta\beta),$$
(24)

which is then related to the free energy density

$$\beta F(\beta) = -\lim_{N \to \infty} \frac{1}{N} \log Z_N(\beta). \tag{25}$$

According to the Gärtner-Ellis theorem, if the scaled cumulant generating function ψ_{β} is differentiable, *i.e.* if the free energy density βF is differentiable, then E_N satisfies a large deviation principle,

$$P_{\beta}(E_N) \simeq \exp(-N I_{\beta}(E_N)). \tag{26}$$

Given the Boltzmann distribution (22) and the number $C(E_N)$ of microstates ω with mean energy E_N per particle, we know from equilibrium statistical mechanics that E_N has the following distribution

$$P_{\beta}(E_N) = \mathcal{N} C(E_N) \frac{e^{-\beta N E_N}}{Z(\beta)}, \tag{27}$$

where \mathcal{N} is some normalisation constant, and thus in the $N \to \infty$ limit

$$P_{\beta}(E_N) \approx \exp(N(S(E_N) - \beta E_N + \beta F(\beta))) \tag{28}$$

where we have introduced the entropy density

$$S(E_N) = \lim_{N \to \infty} \frac{1}{N} \log C(E_N). \tag{29}$$

We obtain the rate function by identification with (6)

$$I_{\beta}(E_N) = -S(E_N) + \beta E_N - \beta F(\beta), \tag{30}$$

from which it follows that the most probable mean energy per particle E_N^* , obtained from the property $I_{\beta}(E_N^*) = 0$, then satisfies

$$F(\beta) = E_N^* - \frac{1}{\beta} S(E_N^*), \tag{31}$$

which defines the Helmoltz free energy at inverse temperature β .

II.B. Dynamical phase transitions in nonequilibrium statistical physics

Consider a stochastic process X(t) and an observable

$$O_{\tau} = \frac{1}{\tau} \int_{0}^{\tau} dt \, f(\boldsymbol{X}(t)), \tag{32}$$

where f is some arbitrary deterministic function, so that we can define a scaled cumulant generating function of O_{τ} ,

$$\psi(s) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \left\langle e^{s\tau O_{\tau}} \right\rangle. \tag{33}$$

We can draw an analogy between the equilibrium canonical ensemble, discussed in the previous section II.A, and biased ensembles of realisations of X(t). A realisation x(t) of the stochastic process X(t), for example the trajectory of the degrees of freedom of some stochastic system, may be considered as a microstate characterised by a mean energy O_{τ} . Given a positive (respectively negative) value of s, the average in (33) will be dominated by trajectories with larger (respectively smaller) values of O_{τ} with respect to the expected mean value of O_{τ} , and these correspond to trajectories sampled by a biased path probability distribution

$$P_s[\mathbf{x}, t] = P_0[\mathbf{x}, t] e^{s\tau O_\tau}, \tag{34}$$

where $P_0[\boldsymbol{x},t]$ is the unbiased path probability of realisations of our stochastic process and where s is then interpreted as a biasing field. In analogy with (24), the biasing field s corresponds to a difference in inverse temperature $\Delta \beta$, such that we are probing trajectories typical of equilibrium systems at higher or lower temperatures (which are by definition rare), and the scaled cumulant generating function ψ is analogous to a difference in free energy density. This analogy suggests that singularities in ψ indicate dynamical phase transitions where symmetries of the trajectories are either created or destroyed.

Analytically, we can compute the scaled cumulant generating function (33) by solving a spectral problem. We introduce the Fokker-Planck linear operator \mathcal{L} of stochastic process $\mathbf{X}(t)$ such that its Fokker-Planck equation is written

$$\frac{\partial}{\partial t}P(x,t) = \mathcal{L}P(x,t),\tag{35}$$

then $\psi(s)$ is given by the largest eigenvalue of the following tilted operator²

$$W_s = \mathcal{L} + sf. \tag{36}$$

Numerically, ensembles of biased trajectories can be generated using population-dynamics methods, and the scaled cumulant generating function can be computed from these ensembles [3]. An analogy with optimal control theory can also be drawn in this context [4]: solving the large deviation problem (35) can be thought as finding the *least unlikely* control mechanism³ of our trajectories which samples the biased distribution (34).

² You can find a derivation of this result using Feynman-Kac formalism in Ref. [2].

³ In the case of an active particles system, it may for example be an additional interaction force between particles.

III. PROBLEMS

A number of examples can be found in the aforementioned reviews [1, 2] as well as in Ref. [5]. In the context of active particles, Ref. [6] provides some analytical and numerical derivations.

REFERENCES

- [1] H. Touchette, The large deviation approach to statistical mechanics, Physics Reports 478, 1 (2009).
- [2] H. Touchette, Introduction to dynamical large deviations of Markov processes, Physica A: Statistical Mechanics and its Applications **504**, 5 (2018).
- [3] T. Nemoto, F. Bouchet, R. L. Jack, and V. Lecomte, Population-dynamics method with a multicanonical feedback control, Physical Review E 93, 062123 (2016).
- [4] R. L. Jack, Ergodicity and large deviations in physical systems with stochastic dynamics, The European Physical Journal B 93, 74 (2020).
- [5] R. Chetrite and H. Touchette, Nonequilibrium Markov Processes Conditioned on Large Deviations, Annales Henri Poincaré 16, 2005 (2015).
- [6] Y.-E. Keta, É. Fodor, F. van Wijland, M. E. Cates, and R. L. Jack, Collective motion in large deviations of active particles, Physical Review E 103, 022603 (2021).