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Large deviation theory and its application to (nonequilibrium) statistical physics are very well introduced in reviews
by Hugo Touchette [1, 2].

I. STATISTICS OF AVERAGES

I.A. Large deviation principle

Consider a sequence X1, . . . , XN of independent and identically distributed random variables. We denote

⟨Xi⟩ = µ, (1a)〈
(Xi − µ)2

〉
= σ2, (1b)

their mean and variance. We introduce the sample average

RN =
1

N

N∑
i=1

Xi, (2)

which is itself a random variable. We can quantify the statistics of RN at different levels in the N → ∞ limit. First,
the law of large numbers indicates that XN converges almost certainly to the expected value µ,

Prob
(

lim
N→∞

Rn = µ
)
= 1. (3)

Second, the central limit theorem tells us that XN converges in distribution to a normal distribution of mean µ and
variance σ2/N ,

Prob(RN ) ∼
N→∞

N
(
µ,
σ2

N

)
. (4)

Both of these results give us information about the statistics of RN close to the mean µ. Third and lastly, the large
deviation principle characterises the statistics of RN away from its mean1. RN is said to satisfy a large deviation
principle if the following limit exists,

lim
N→∞

1

N
log Prob(RN = r) = −I(r), (5)

where I is called the rate function which characterises the exponential decay of probabilities of RN away from its
mean µ. We denote the asymptotic convergence of probability of RN as

Prob(RN = r) ≍ exp(−N I(r)). (6)

We introduce the scaled cumulant generating function

ψ(s) = lim
N→∞

1

N
log ⟨exp(sNRN )⟩ . (7)

The Gärtner-Ellis theorem states that if ψ exists and is differentiable, then RN satisfies a large deviation principle
and the rate function is given by

I(r) = sup
s

{sr − ψ(s)}, (8a)

1 Realisations of RN away from µ in the limit N → ∞ are characterised as rare.
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and conversely

ψ(s) = sup
r

{sr − I(r)}, (8b)

such that the rate function I and the scaled cumulant generating function ψ are related by Legendre-Fenchel trans-
forms.

I.B. Properties of the rate function and the scaled cumulant generating function

It follows from (7) that

ψ(0) = 0, (9a)

and the derivatives of ψ at s = 0 are linked to the asymptotic mean

ψ′(0) = lim
N→∞

1

N

⟨NRN exp(sNRN )⟩
⟨exp(sNRN )⟩

∣∣∣∣
s=0

= lim
N→∞

⟨RN ⟩ = µ (9b)

and variance

ψ′′(0) = lim
N→∞

1

N

〈
(NRN )2 exp(sNRN )

〉〈
exp(SNRN )

〉
−
〈
NRN exp(sNRN )

〉〈
NRN exp(sNRN )

〉〈
exp(sNRN )

〉2
= lim

N→∞
N

(〈
R2

N

〉
−
〈
RN

〉2)
= σ2

(9c)

of the sample average RN . Moreover it follows from (9a)

ψ(0) = sup
r

{−I(r)} = inf
r
I(r) = 0, (10)

thus the rate function I is a positive function,

I(r) ≥ 0. (11)

We denote s(r) the value which maximises (8a), thus

I(r) = s(r)r − ψ(s(r)). (12)

Since this is a maximum this implies that

∂

∂s
(sr − ψ(s))

∣∣∣∣
s=s(r)

= 0 ⇒ ψ′(s(r)) = r. (13)

It is possible to show that rate functions I and scaled cumulant generating function ψ obtained from the Gärtner-Ellis
theorem are strictly convex by property of the Legendre-Fenchel transform [1], and that their curvatures are related
by

I ′′(r) =
1

ψ′′(s(r))
. (14)

Their convexity implies that there is an unique s(r) which satisfies (13) and in particular, considering (9b) and (12),
this indicates that

s(µ) = 0, (15)

I(µ) = 0, (16)

with the latter being the global minimum of I thus

I ′(µ) = 0. (17)
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We note that (16) implies from (6) that

Prob(RN = µ) ≍ 1, (18)

which is equivalent to the law of large numbers (3), and moreover, using (14), we obtain

I ′′(µ) =
1

ψ′′(s(µ))
=

1

ψ′′(0)
=

1

σ2
, (19)

thus with a Taylor expansion of I close to µ,

I(r) = I(µ) + I ′(µ)(r − µ) +
1

2
I ′′(µ)(r − µ)2, (20)

and again from (6),

Prob(Rn = r) ≍ exp

(
− (r − µ)2

2(σ2/N)

)
, (21)

which is equivalent to the central limit theorem (4).

II. LARGE DEVIATION THEORY AND STATISTICAL MECHANICS

II.A. Analogy with equilibrium statistical mechanics

Consider a system of N particles and EN the mean energy per particle. At thermal equilibrium, the distribution
of microstates ω only depends on their energy NEN (ω) and is given by the Boltzmann distribution

Probβ(ω) =
e−βNEN (ω)

Z(β)
, (22)

where β = 1/(kBT ), with β the Boltzmann constant and T the temperature, and where

Z(β) =
∑
ω

e−βNEN (ω) (23)

is the partition function. It is noteworthy that the Boltzmann weights for the mean energy per particle (22) feature a
similar exponential form as sample averages following a large deviation principle (6), which is the basis of our analogy.

We can define the scaled cumulant generating function of the mean energy EN

ψβ(∆β) = lim
N→∞

1

N
log

∑
ω

e−∆β N EN (ω) Probβ(ω)

= lim
N→∞

1

N
log

Z(β +∆β)

Z(β)

= βF (β)− (β +∆β)F (β +∆β),

(24)

which is then related to the free energy density

βF (β) = − lim
N→∞

1

N
logZN (β). (25)

According to the Gärtner-Ellis theorem, if the scaled cumulant generating function ψβ is differentiable, i.e. if the free
energy density βF is differentiable, then EN satisfies a large deviation principle,

Pβ(EN ) ≍ exp(−N Iβ(EN )). (26)

Given the Boltzmann distribution (22) and the number C(EN ) of microstates ω with mean energy EN per particle,
we know from equilibrium statistical mechanics that EN has the following distribution

Pβ(EN ) = N C(EN )
e−βNEN

Z(β)
, (27)
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where N is some normalisation constant, and thus in the N → ∞ limit

Pβ(EN ) ≍ exp(N(S(EN )− βEN + βF (β))) (28)

where we have introduced the entropy density

S(EN ) = lim
N→∞

1

N
logC(EN ). (29)

We obtain the rate function by identification with (6)

Iβ(EN ) = −S(EN ) + βEN − βF (β), (30)

from which it follows that the most probable mean energy per particle E∗
N , obtained from the property Iβ(E

∗
N ) = 0,

then satisfies

F (β) = E∗
N − 1

β
S(E∗

N ), (31)

which defines the Helmoltz free energy at inverse temperature β.

II.B. Dynamical phase transitions in nonequilibrium statistical physics

Consider a stochastic process X(t) and an observable

Oτ =
1

τ

∫ τ

0

dt f(X(t)), (32)

where f is some arbitrary deterministic function, so that we can define a scaled cumulant generating function of Oτ ,

ψ(s) = lim
τ→∞

1

τ
log

〈
esτOτ

〉
. (33)

We can draw an analogy between the equilibrium canonical ensemble, discussed in the previous section II.A, and
biased ensembles of realisations of X(t). A realisation x(t) of the stochastic process X(t), for example the trajectory
of the degrees of freedom of some stochastic system, may be considered as a microstate characterised by a mean
energy Oτ . Given a positive (respectively negative) value of s, the average in (33) will be dominated by trajectories
with larger (respectively smaller) values of Oτ with respect to the expected mean value of Oτ , and these correspond
to trajectories sampled by a biased path probability distribution

Ps[x, t] = P0[x, t] e
sτOτ , (34)

where P0[x, t] is the unbiased path probability of realisations of our stochastic process and where s is then interpreted
as a biasing field. In analogy with (24), the biasing field s corresponds to a difference in inverse temperature ∆β,
such that we are probing trajectories typical of equilibrium systems at higher or lower temperatures (which are by
definition rare), and the scaled cumulant generating function ψ is analogous to a difference in free energy density. This
analogy suggests that singularities in ψ indicate dynamical phase transitions where symmetries of the trajectories are
either created or destroyed.

Analytically, we can compute the scaled cumulant generating function (33) by solving a spectral problem. We
introduce the Fokker-Planck linear operator L of stochastic process X(t) such that its Fokker-Planck equation is
written

∂

∂t
P (x, t) = LP (x, t), (35)

then ψ(s) is given by the largest eigenvalue of the following tilted operator2

Ws = L+ sf. (36)

Numerically, ensembles of biased trajectories can be generated using population-dynamics methods, and the scaled
cumulant generating function can be computed from these ensembles [3]. An analogy with optimal control theory can
also be drawn in this context [4]: solving the large deviation problem (35) can be thought as finding the least unlikely
control mechanism3 of our trajectories which samples the biased distribution (34).

2 You can find a derivation of this result using Feynman-Kac formalism in Ref. [2].
3 In the case of an active particles system, it may for example be an additional interaction force between particles.
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III. PROBLEMS

A number of examples can be found in the aforementioned reviews [1, 2] as well as in Ref. [5]. In the context of
active particles, Ref. [6] provides some analytical and numerical derivations.
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